一阶负反馈的补偿特性

一阶负反馈的补偿特性

一阶负反馈的补偿特性_第1张图片

此例子重点说明了当有外部的恒定变量时,无论如何,LEV都无法到达目标值。最后的LEV值与目标值之差为:1/比例常数)*常数。

该结论可以应用在库存控制中,如果有一个恒定的销售值,则无论如何控制,库存都很难得到预定的库存水平。

具体方针如下:

方案1

(01) FINAL TIME = 8

Units: Month

The final time for the simulation.

(02) INITIAL TIME = 0

Units: Month

The initial time for the simulation.

(03) LEV= INTEG (

RT1+RT2,

100)

Units: **undefined**

(04) RT1=

偏差*比例系数

Units: **undefined**

(05) RT2=

常数

Units: **undefined**

(06) SAVEPER =

TIME STEP

Units: Month [0,?]

The frequency with which output is stored.

(07) TIME STEP = 1

Units: Month [0,?]

The time step for the simulation.

(08) 偏差=

目标-LEV

Units: **undefined**

(09) 常数=

8

Units: **undefined**

(10) 比例系数=

0.5

Units: **undefined**

(11) 目标=

100

Units: **undefined**

仿真图如

一阶负反馈的补偿特性_第2张图片

仿真2

(01) FINAL TIME = 8

Units: Month

The final time for the simulation.

(02) INITIAL TIME = 0

Units: Month

The initial time for the simulation.

(03) LEV= INTEG (

RT1+RT2,

100)

Units: **undefined**

(04) RT1=

偏差*比例系数

Units: **undefined**

(05) RT2=

常数

Units: **undefined**

(06) SAVEPER =

TIME STEP

Units: Month [0,?]

The frequency with which output is stored.

(07) TIME STEP = 1

Units: Month [0,?]

The time step for the simulation.

(08) 偏差=

目标-LEV

Units: **undefined**

(09) 常数=

8

Units: **undefined**

(10) 比例系数=

1

Units: **undefined**

(11) 目标=

100

Units: **undefined**

一阶负反馈的补偿特性_第3张图片

从上述两个方针可以看出,最后的LEV值都没有达到目标值100.仿真1,到达的目标值为116,差值为 (1/比例常数)×常数=(1/0.5)*8=16.仿真2的目标值为100,实际值为108,该差值为,(1/比例常数)×常数=(1/1)*8=8.

你可能感兴趣的:(output)