DCT变换

DCT变换的基本思路是将图像分解为8×8的子块或16×16的子块,并对每一个子块进行单独的DCT变换,然后对变换结果进行量化、编码。随着子块尺寸的增加,算法的复杂度急剧上升,因此,实用中通常采用8×8的子块进行变换,但采用较大的子块可以明显减少图像分块效应。

      在图像压缩中,一般把图像分解为8×8的子块,然后对每一个子块进行DCT变换、量化,并对量化后的数据进行Huffman编码。DCT变换可以消除图像的空间冗余,Huffman编码可以消除图像的信息熵冗余。

      DCT 是无损的,它只将图像从空间域转换到变换域上,使之更能有效地被编码。对一个图像子块而言,将对变换后的6?个系数进行量化,并对Z字顺序扫描系数表进行 编码。这种排列方法有助于将低频非0系数置于高频系数之前,直流系数由于包含了所有图像特征中的关键部分而被单独编码。量化后的系数经过熵编码进一步无损 压缩,通常采用的是Huffman编码。这种压缩编码方法中,图像质量的降低主要是由于对系数的量化造成,且不可恢复。假设子图像为f(x, y),则DCT变换可以由下面的公式实现:  
DCT变换_第1张图片 DCT变换_第2张图片

      其中式(1)的f(u, v)表示变换域的高频成分,也称为交流系数;式(2)中F(0, 0)表示变换域中的低频成分,也称为直流系数。对变换结果进行分析,可以看出能量主要集中到左上角。DCT变换具有良好的去相关特性。在图像的压缩编码中,N一般取8。

DCT变换_第3张图片

      在解码时首先得到各点的DCT系数,然后根据下面的DCT反变换即可恢复出原图像。DCT的反变换公式为:

DCT变换_第4张图片

     利用公式(3)可以无损地恢复原图像。在实际的应用中,使用DCT变换的矩阵描述形式更容易理解。

基于系数重要性的分层编码

      按照上面的方法对图像变换之后的系数进行编码,产生的码流不具有分层的特性,因而不具有分级传输的能力。为了实现分层压缩,我们对变换后的系数进行重新排列(见图1),再进行支持分级传输特性的编码。

      由上面图中的方法可知,变换后能量集中到变换域的左上角。因此基于DCT变换的 图像压缩方法是对系数采用“Z”字型扫描的方式处理。为了实现分层编码,我们将这些系数重新排列,然后进行分层次的编码:左上角的4个系数作为基本层的数 据;左上角16个系数作为第一增强层的数据,这16个系数是除基本层中的四个系数以外的其余系数;从16-47的数据作为第二增强层的数据;其余的16个 系数作为第三增强层数据。

     经过重排并进行分层压缩之后,在各个层次上进行测试可以发现,在只传输基本层时可提供峰值信噪比为23.23dB以上的图像;增加一个增强层,图像的峰值信噪比强达到28.9dB以上;如果加入第二个增强层,恢复图像的峰值信噪比可以达到37.35dB。

      采用这种方法,通过对DCT变换后 的系数按照其重要性进行取舍,可以非常方便地实现图像序列的分层压缩和分级传输,大大提高压缩算法对不同传输通道的适应能力,并兼顾到帧内图像质量与帧速 率。在一般的应用场合下,只传输第一增强层的数据即可达到较好的视觉效果,此时需要熵编码的数据量已经减少为原数据量的1/4,通过熵编码的方法,可以获 得很高的压缩比。

你可能感兴趣的:(DCT变换)