- 通过Java代码实现图片的放大和缩小
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 注意力池化层:从概念到实现及应用
专业发呆业余科研
深度模型底层原理python人工智能transformer深度学习自然语言处理图像处理
引言在现代深度学习模型中,注意力机制已经成为一个不可或缺的组件,特别是在处理自然语言和视觉数据时。多头注意力机制(MultiheadAttention)是Transformer模型的核心,它通过多个注意力头来捕捉序列中不同部分之间的关系。然而,在多模态模型中,如何有效地将图像特征和文本特征结合起来一直是一个挑战。注意力池化层(AttentionPoolingLayer)提供了一种有效的解决方案,通
- Docker入门系列之三:如何将dockerfile制作好的镜像发布到Docker hub上
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 成功
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- 如何用JavaScript判断前端应用运行环境(移动平台还是桌面环境)
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- SSD目标检测系统
月见樽
首发于个人博客系统结构system.pngSSD识别系统也是一种单步物体识别系统,即将提取物体位置和判断物体类别融合在一起进行,其最主要的特点是识别器用于判断物体的特征不仅仅来自于神经网络的输出,还来自于神经网络的中间结果。该系统分为以下几个部分:神经网络部分:用作特征提取器,提取图像特征识别器:根据神经网络提取的特征,生成包含物品位置和类别信息的候选框(使用卷积实现)后处理:对识别器提取出的候选
- 图像预处理之图像去重
江小皮不皮
计算机视觉opencv人工智能图像去重直方图
图像预处理之图像去重图像去重介绍方法基于直方图进行图像比对基于哈希法基于ORG进行图像特征提取基于机器学习批量去重图像去重介绍图像去重通常指的是完全相同的图像,即内容完全相同,颜色、尺寸、方向等都相同。但是在实际应用中,也有相似图像去重的需求,即内容大致相同,颜色、尺寸、方向等可能有所不同。因此,图像去重指的可以是完全一样的图像,也可以是相似的图像。图像去重的方法有以下几种:方法哈希法:通过计算图
- 学习笔记---自动驾驶
酒饮微醉-
自动驾驶学习笔记自动驾驶
一、理论知识1.自动驾驶决策概述:自动驾驶决策层是系统的核心,负责根据感知层信息建立模型,分析并制定决策策略,控制车辆行驶。2.端到端深度神经网络:通过深度神经网络将感知数据直接映射到控制命令,简化自动驾驶系统的决策流程。3.卷积神经网络(CNN):关键技术用于提取图像特征,包括卷积层、激活函数、池化层等组件处理图像数据。4.循环神经网络(RNN):处理序列数据,如车辆历史速度序列,用于建模时间序
- BEV (3)---DETR3d
aolaf
BEV3d深度学习机器学习
1算法简介1.1算法思想不同于LSS、BEVDepth的bottom-up式,先进行深度估计,设计2D转3D的模块。DETR3D是一种3D转2D的top-down思路。先预设一系列预测框的查询向量objectquerys,利用它们生成3Dreferencepoint,将这些3Dreferencepoint利用相机参数转换矩阵,投影回2D图像坐标,并根据他们在图像的位置去找到对应的图像特征,用图像特
- 盒子滤波(BOX FILTER)方框滤波学习笔记
Hilary煜
学习笔记matlab数据结构
功能:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和。应用:图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算Haar特征是一种用于物体识别的数字图像特征,特别是在人脸检测领域中得到了广泛应用。Haar特征得名于其与原始的Haar小波变换在计算方式上的相似性。这种特征通过计算图像中相邻矩形区域的像素强度差来捕捉图像的某些特性,如边缘、线条和中心
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- Python(PyTorch)多语言图像感知质量指标算法
亚图跨际
Python算法交叉知识算法单尺度多尺度图像感知质量分布式图像特征GPU变速图像压缩视频压缩
要点算法实现:PyTorch单尺度和多尺度质量指标算法|C++单尺度质量指标算法|Rust多尺度质量指标算法|LabVIEW单尺度质量指标算法|MATLAB单尺度质量指标算法|PyTorch完整参考图像质量测量指标、和分布式图像特征质量测量指标|多尺度质量模型应用:图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩语言内容分比Python斯皮尔曼秩相关性斯皮尔曼秩相关性是两个
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10结合全新多尺度动态增强注意力机制DSAttention(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测神经网络
1.DSAttention介绍DSAttention注意力机制在图像特征提取中具有以下优点:(1).全局信息捕捉能力:DSAttention机制通过使用软注意力机制(SoftmaxAttention)来计算特征图的全局相关性。这种方式能够更好地捕捉图像中的全局信息,有助于增强对复杂场景或大尺度物体的识别能力。(2).多尺度信息融合:该机制引入了多尺度卷积操作,包括不同大小的卷积核(如5x5、1x7
- 图像处理 -- 角点的概念与作用
sz66cm
图像处理人工智能
在图像处理领域,角点(Corner)是图像中一个重要的特征点。角点是指图像中具有局部最大曲率或梯度变化明显的位置,通常出现在两条或多条边缘的交汇处。例如,图像中的建筑物拐角、棋盘格的角等位置都可能被检测为角点。角点的作用特征提取:角点作为图像中的关键点,能够稳定地反映图像的局部结构,因此在图像特征提取中经常使用。角点具有较强的独特性,即使图像发生了旋转、缩放或轻微的光照变化,角点的位置也往往不会发
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 05基于卷积神经网络-支持向量机(自动寻优)CNN-SVM数据分类算法
机器不会学习CSJ
cnn支持向量机分类人工智能
CNN原理卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛用于计算机视觉领域。CNN的核心思想是通过卷积层和池化层来自动提取图像中的特征,从而实现对图像的高效处理和识别。在传统的机器学习方法中,图像特征的提取通常需要手工设计的特征提取器,如SIFT、HOG等。而CNN则可以自动从数据中学习到特征表示。这是因为CNN模型的卷积层使用了一系列的卷积核
- 【眼科大模型】Ophtha-LLaMA2:视觉模型提取图像特征 + LLM基于特征生成眼底病变的诊断报告
Debroon
医学大模型:个性化精准安全可控计算机视觉人工智能
Ophtha-LLaMA2:视觉模型提取图像特征+LLM基于特征生成眼底病变的诊断报告提出背景设计思路选择大模型基座生成诊断报告论文:https://arxiv.org/pdf/2312.04906.pdf提出背景目标是开发一个全面的眼科模型,可以根据不同仪器的检查报告准确快速地诊断疾病。Ophtha-LLaMA2,通过三种不同的眼科图像(OSA,OCT,CFP)进行诊断,并给出相应的诊断:光学相
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者有什么区别?请具体举例?支持向量机分类器需要标签吗?
神笔馬良
图像处理支持向量机人工智能
问题描述:传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者有什么区别?请具体举例?支持向量机分类器需要标签吗?问题解答:传统图像处理方法对水果在图像中的位置进行分割,有的方法不使用支持向量机或者贝叶斯分类器等分类器直接分割,有的使用分类器进行分割,两者之间的主要区别在于采用的方法和技术的不同,以及对图像特征的处理方
- 手工设计特征方法指的是什么算法?是什么意思?
legendarylin
算法计算机视觉图像处理
手工设计特征方法是指在目标检测算法中,通过人工设计图像特征来识别目标物体的算法。相对于基于深度学习的方法,手工设计特征方法需要对图像特征进行人工选择和设计,需要大量的专业知识和经验,但在一些场景中仍然有广泛的应用。下面是一些常用的手工设计特征方法和举例:Haar特征:Haar特征是一种用于目标检测的特征,它通过计算图像中的灰度差异来识别目标物体。Haar特征被广泛应用于人脸检测算法中,如Viola
- 最关键的十个图像特征
superdont
计算机视觉图像处理
在计算机视觉中,图像特征是用来描述图像中视觉元素的一组属性,它们对于图像识别、分类、检测和分割等任务至关重要。以下是10个在计算机视觉中广泛使用的最重要的图像特征:颜色直方图(ColorHistogram):颜色直方图是图像中颜色分布的统计表示,它显示了不同颜色在图像中的出现频率。边缘检测(EdgeDetection):边缘检测特征捕捉图像中对象和区域的显著变化,如Canny、Sobel和Prew
- 卷积神经网络(CNN)
栉风沐雪
深度学习cnn人工智能神经网络
本文仅在理论方面讲述CNN相关的知识,并给出AlexNet,Agg,ResNet等网络结构的代码。1.构成由输入层、卷积层、池化层、全连接层构成。输入层:输入数据卷积层:提取图像特征池化层:压缩特征全连接层:为输出准备,形同一维神经网络,下文不另起文笔描述2.神经网络与CNN对比左边为神经网络,右边为卷积神经网络。均采用的时较为简单的结构,卷积神经网络是对基础神经网络的延申,由一维扩展到三位空间,
- 目标检测 | 卷积神经网络(CNN)详细介绍及其原理详解
小哥谈
YOLO算法:基础+进阶+改进cnn人工智能神经网络YOLO计算机视觉机器学习目标检测
前言:Hello大家好,我是小哥谈。卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它的设计灵感来自于生物学中视觉皮层的工作原理。CNN的核心思想是通过输入层、卷积层、池化层、全连接层和输出层来提取图像特征并进行分类。本文将详细给大家介绍卷积神经网络的基本组成及其实现原理!~目录1.基础概念2.输入层3.卷积层4.池
- 图像搜索和分类
顽皮的石头7788121
基于内容的搜索检索在视觉上具有相似性的图像,在图像数据库中返回具相似颜色、纹理和物体以及场景的图像。视觉单词通常通过特征描述子(SIFT)等结合聚类算法得到聚类质心。用视觉单词直方图来表示一个图像。图像索引根据图像特征分别建立索引,以索引的方式搜索图像。图像分类图像分类算法类似,提取关键特征,以机器学习方法进行分类
- 51-21 LSS (Lift,Splat,Shoot) ,实现 BEV 感知的开山之作 论文精读
深圳季连AIgraphX
AutoGPT自动驾驶大模型人工智能transformer自动驾驶智慧城市目标跟踪gpt-3计算机视觉
这以后阅读的论文逐渐靠近自动驾驶实用领域,本文要讲的是Bird's-Eye-View,BEV开山之作,来自Nvidia的LSS论文。LSS核心动机:2D-->3D,构建BEV空间。LSS核心结构首先是利用Lift模块进行深度分布学习,将二维图像特征生成3D特征,其次利用Splat模块做特征映射,把3D特征拍扁得到BEV特征图,最后利用Shoot模块在BEV特征图上进行相关任务操作。论文和代码地址论
- 第十四篇【传奇开心果系列】Python的OpenCV库技术点案例示例:图像特征提取与描述
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv人工智能计算机视觉
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、OpenCV图像特征提取与描述介绍二、OpenCV图像特征提取与描述初步示例代码三、扩展思路介绍四、特征点筛选和匹配优化示例代码五、多尺度特征提取示例代码六、非局部特征描述子示例代码七、基于深度学习的特征提取示例代码八、自定义特征提取示例代码九、归纳总结系列短博文目录Python的OpenCV库技术点
- knn实现掌纹识别
哲子带你学编程
计算机视觉人工智能深度学习
Knn掌纹识别算法对比:KnnResNet高斯滤波器、Gabor滤波器、LBP等掌纹提取哲,zhe摘要:自动掌纹识别是一种近年来出现的生物识别技术。在人们宽阔的掌心皮肤表面上,有着丰富的纹理结构,包括主线、皱纹线、脊线、奇异点、纹理和其他图像特征。这些特征彼此不同,与基因无关,因此掌纹包含了大量的信息可以用于身份识别。掌纹图像中的主要线条和皱纹是最重要的特征,也是掌纹识别的主要依据。主线是指“头线
- InverseMatrixVT3D:简单高效实现三维占用预测模型!
深蓝学院
目标检测三维重建
论文标题:InverseMatrixVT3D:AnEfficientProjectionMatrix-BasedApproachfor3DOccupancyPrediction论文作者:ZhenxingMing,JulieStephanyBerrio,MaoShan,andStewartWorrall导读:本文提出了一种简单有效的方法——利用投影矩阵将环视图图像特征转换为三维体积特征,用于三维语义
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,