也可以认为是五大数据库存储模型。
数据库市场需要细分,行式数据库不再满足所有的需求,而有很多需求需要通过本内存数据库和列式数据库解决,列式数据库在数据分析、海量存储、BI这三个领域有自己独到。
定义:关系模型使用记录(行或者元祖)进行存储,记录存储在表中,表由架构界定。表中的每个列都有名称和类型,表中的所有记录都要符合表的定义。SQL是专门的查询语言,提供相应的语法查找符合条件的记录,如表联接(Join)。表联接可以基于表之间的关系在多表之间查询记录。
存储格式:行式数据库把一行中的数据值串在一起存储起来,然后再存储下一行的数据,以此类推。
例如以下的一个表:
EmpId | Lastname | Firstname | Salary |
---|---|---|---|
1 | Smith | Joe | 40000 |
2 | Jones | Mary | 50000 |
3 | Johnson | Cathy | 44000 |
1,Smith,Joe,40000;2,Jones,Mary,50000;3,Johnson,Cathy,44000;
特点:据以行相关的存储体系架构进行空间分配,主要适合与小批量的数据处理,常用于联机事务型数据处理。不能满足后面三个需求:对数据库高并发读写要求,对海量数据的高效率存储和访问需求,对数据库高可扩展性和高可用性。 一句话不适合分布式、高并发和海量。
定义:什么是列式数据库?列式数据库是以列相关存储架构进行数据存储的数据库。列式存储以流的方式在列中存储所有的数据,主要适合与批量数据处理和即席查询。
存储格式 :
列式数据库把一列中的数据值串在一起存储起来,然后再存储下一列的数据,以此类推。
1,2,3;Smith,Jones,Johnson;Joe,Mary,Cathy;40000,50000,44000;
特点:包括查询快,由于查询需要读取的blocks少;数据压缩比高,正因为同一类型的列存储在一起。Load快。 简化数据建模的复杂性。但是插入更新慢,不太适合数据老是变化,它是按列存储的。这时候你就知道它适做DSS(决策支持系统),BI的优秀选择,数据集市,数据仓库,它不适合OLTP。
Examples are Sybase IQ, C-Store, Vertica, VectorWise,MonetDB, ParAccel, and Infobright.
//具体请参考如下地址
http://en.wikipedia.org/wiki/Column-oriented_DBMS.
即Key-Value存储,简称KV存储。它是NoSQL存储的一种方式。它的数据按照键值对的形式进行组织,索引和存储。KV存储非常适合不涉及过多数据关系业务关系的业务数据,同时能有效减少读写磁盘的次数,比SQL数据库存储拥有更好的读写性能。
典型例子 Sorted String Table即SSTable。其实STL 库中map和hash_map, JAVA中hash_table, hash_map就是键值存储。 但是他们值只支持内存操作,而且map的查询效率太低,关键是他们只是简单的数据结构,不能实现较大规模存储和分布式,而且数据的修改效率比较低。 而SSTalbe就解决了这些问题。
键值存储实际是分布式表格系统的一种。
其中的实现机制也可以参考
LevelDB/Sstable: http://blog.chinaunix.net/uid-26111972-id-3342215.html.
LevelDB: http://www.samecity.com/blog/Index.asp?SortID=12
分布式key-value 系统有cassandra, hbase, bigtable etc
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis