最近用scrapy来进行网页抓取,对于pythoner来说它用起来非常方便,详细文档在这里:http://doc.scrapy.org/en/0.14/index.html
要想利用scrapy来抓取网页信息,需要先新建一个工程,scrapy startproject myproject
工程建立好后,会有一个myproject/myproject的子目录,里面有item.py(由于你要抓取的东西的定义),pipeline.py(用于处理抓取后的数据,可以保存数据库,或是其他),然后是spiders文件夹,可以在里面编写爬虫的脚本.
这里以爬取某网站的书籍信息为例:
item.py如下:
?
from scrapy.item import Item, Field class BookItem(Item): # define the fields for your item here like: name = Field() publisher = Field() publish_date = Field() price = Field()
?
我们要抓取的东西都在上面定义好了,分别是名字,出版商,出版日期,价格,
下面就要写爬虫去网战抓取信息了,
spiders/book.py如下:
?
from urlparse import urljoin import simplejson from scrapy.http import Request from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.selector import HtmlXPathSelector from myproject.items import BookItem class BookSpider(CrawlSpider): name = 'bookspider' allowed_domains = ['test.com'] start_urls = [ "http://test_url.com", #这里写开始抓取的页面地址(这里网址是虚构的,实际使用时请替换) ] rules = ( #下面是符合规则的网址,但是不抓取内容,只是提取该页的链接(这里网址是虚构的,实际使用时请替换) Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=\d+'))), #下面是符合规则的网址,提取内容,(这里网址是虚构的,实际使用时请替换) Rule(SgmlLinkExtractor(allow=(r'http://test_rul/test?product_id=\d+')), callback="parse_item"), ) def parse_item(self, response): hxs = HtmlXPathSelector(response) item = BookItem() item['name'] = hxs.select('//div[@class="h1_title book_head"]/h1/text()').extract()[0] item['author'] = hxs.select('//div[@class="book_detailed"]/p[1]/a/text()').extract() publisher = hxs.select('//div[@class="book_detailed"]/p[2]/a/text()').extract() item['publisher'] = publisher and publisher[0] or '' publish_date = hxs.select('//div[@class="book_detailed"]/p[3]/text()').re(u"[\u2e80-\u9fffh]+\uff1a([\d-]+)") item['publish_date'] = publish_date and publish_date[0] or '' prices = hxs.select('//p[@class="price_m"]/text()').re("(\d*\.*\d*)") item['price'] = prices and prices[0] or '' return item
然后信息抓取后,需要保存,这时就需要写pipelines.py了(用于scapy是用的twisted,所以具体的数据库操作可以看twisted的资料,这里只是简单介绍如何保存到数据库中):
?
from scrapy import log #from scrapy.core.exceptions import DropItem from twisted.enterprise import adbapi from scrapy.http import Request from scrapy.exceptions import DropItem from scrapy.contrib.pipeline.images import ImagesPipeline import time import MySQLdb import MySQLdb.cursors class MySQLStorePipeline(object): def __init__(self): self.dbpool = adbapi.ConnectionPool('MySQLdb', db = 'test', user = 'user', passwd = '******', cursorclass = MySQLdb.cursors.DictCursor, charset = 'utf8', use_unicode = False ) def process_item(self, item, spider): query = self.dbpool.runInteraction(self._conditional_insert, item) query.addErrback(self.handle_error) return item def _conditional_insert(self, tx, item): if item.get('name'): tx.execute(\ "insert into book (name, publisher, publish_date, price ) \ values (%s, %s, %s, %s)", (item['name'], item['publisher'], item['publish_date'], item['price']) )?
完成之后在setting.py中添加该pipeline:
?
ITEM_PIPELINES = ['myproject.pipelines.MySQLStorePipeline']
?最后运行scrapy crawl bookspider就开始抓取了
?
本文地址http://www.chengxuyuans.com/Python/39302.html