信号的数字化需要三个步骤:抽样、量化和编码。抽样是指用每隔一定时间的信号样值序列来代替原来在时间上连续的信号,也就是在时间上将模拟信号离散化。量化是用有限个幅度值近似原来连续变化的幅度值,把模拟信号的连续幅度变为有限数量的有一定间隔的离散值。编码则是按照一定的规律,把量化后的值用二进制数字表示,然后转换成二值或多值的数字信号流。这样得到的数字信号可以通过电缆、微波干线、卫星通道等数字线路传 输 。在接收端则与上述模拟信号数字化过程相反,再经过后置滤波又恢复成原来的模拟信号。 上述数字化的过程又称为脉冲编码调制
1 抽样
话音信号是模拟信号,它不仅在幅度取值上是连续的,而且在时间上也是连续的。要使话音 信号数字化并实现时分多路复用,首先要在时间上对话音信号进行离散化处理,这一过程叫 抽样。所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。理论和实践证明,只要抽样脉冲的间隔T≤1/2fm(或≥2fm)(fm是话音信号的 最高频率),则抽样后的样值序列可不失真地还原成原来的话音信号。
例如,一路电话信号的频带为300~3400Hz,fm=3400Hz,则抽样频率fs≥2×3400=6800Hz。 如按6800Hz的抽样频率对300~3400Hz的电话信号抽样,则抽样后的样值序列可不失真地还原成原来的话音信号,话音信号的抽样频率通常取8000Hz/s。 对于PAL制电视信号。视频带宽为6MHz,按照CCIR601建议,亮度信号的抽样频率为13.5MHz ,色度信号为6.75MHz。
2 量化
抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。这就要对幅值进行舍零取整的处理,这个过程称为量化。
量化有两种方式:
(a)取整时只舍不入,即0 ~1伏间的所有输入电压都输出0伏,1~2伏间所有输入电压都输出1伏等。采用这种量化方式,输入电压总是大于输出电压,因此产生的量化误差总是正的,最大量化误差等于两个相邻量化级的间隔Δ。(b)在取整时有舍有入,四舍五入,即0~0.5伏间的输入电压都输出0伏,0.5~1.5伏间的输出电压都输出1伏等等。采用这种量化方式量化误差有正有负,量化误差的绝对值最大为Δ/2 。因此,采用四舍五入法进行量化,误差较小。
实际信号可以看成量化输出信号与量化误差之和,因此只用量化输出信号来代替原信号就会有失真。一般说来,可以把量化误差的幅度概率分布看成在-Δ/2~+Δ/2之间的均匀分布。 可以证明,量化失真功率,即与最小量化间隔的平方成正比。最小量化间隔越小,失真就越小。最小量化间隔越小,用来表示一定幅度的模拟信号时所需要的量化级数就越多,因此处理和传输就越复杂。所以,量化既要尽量减少量化级数,又要使量化失真看不出来。一般都用一个二进制数来表示某一量化级数,经过传输在接收端再按照这个二进制数来恢复原信号的幅值。所谓量化比特数是指要区分所有量化级所需几位二进制数。例如,有8个量化级,那么可用三位二进制数来区分,因此,称8个量化级的量化为3比特量化。8比特量化则是指共有64个量化级的量化。
量化误差与噪声是有本质的区别的。因为任一时刻的量化误差是可以从输入信号求出,而噪声与信号之间就没有这种关系。可以证明,量化误差是高阶非线性失真的产物。但量化失真在信号中的表现类似于噪声,也有很宽的频谱,所以也被称为量化噪声并用信噪比来衡量。
上面所述的采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。这种非均匀量化级的安排称为非均匀量化或非线性量化。数字电视信号大多采用非均匀量化方式,这是由于模拟视频信号要经过校正,而校正类似于非线性量化特性,可减轻小信号时误差的影响。
对于音频信号的非均匀量化也是采用压缩、扩张的方法,即在发送端对输入的信号进行压缩处理再均匀量化,在接收端再进行相应的扩张处理。
目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。我国规定采用A律13折线压扩特性。
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。
3 编码
抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。 最简单的编码方式是二进制编码。具体说来,就是用n比特二进制码来表示已经量化了的样值,每个二进制数对应一个量化值,然后把它们排列,得到由二值脉冲组成的数字信息流 。编码过程在接收端,可以按所收到的信息重新组成原来的样值,再经过低通滤波器恢复原信号。用这样方式组成的脉冲串的频率等于抽样频率与量化比特数的积,称为所传输数字信号的数码率。显然,抽样频率越高,量化比特数越大,数码率就越高,所需要的传输带宽就越宽。
除了上述的自然二进制码,还有其他形式的二进制码,如格雷码和折叠二进制码等,表1-1 示出了这三种二进制码。这三种码各有优缺点:(1)自然二进制码和二进制数一一对应,简单易行,它是权重码,每一位都有确定的大小,从最高位到最低位依次为,可以直接进行大小比较和算术运算。自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。(2)格雷码则没有这一缺点,它在相邻电平间转换时,只有一位发生变化,格雷码不是权重码,每一位码没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成模拟信号,要经过一次码变换,变成自然二进制码。(3)折叠二进制码沿中心电平上下对称,适于表示正负对称的双极性信号。它的最高位用来区分信号幅值的正负 。折叠码的抗误码能力强。
表1-1 各种二进制码量化电平
在通信理论中,编码分为信源编码和信道编码两大类。所谓信源编码是指将信号源中多余的信息除去,形成一个适合用来传输的信号。为了抑制信道噪声对信号的干扰,往往还需要对信号进行再编码,编成在接收端不易为干扰所弄错的形式,这称为信道编码。为了对付干扰,必须花费更多的时间,传送一些多余的重复信号,从而占用了更多频带,这是通信理论中的一条基本原理。
4 数字视频信号的编码方式和格式
(1)复合编码和分量编码
视频信号有两种编码方式,即复合编码和分量编码。复合编码是将复合彩色信号直接编码成PCM形式。复合彩色信号是指彩色全电视信号,它包含有亮度信号和以不同方式编码的色度信号。分量编码是将三基色信号R、G、B分量或亮度和色差信号Y、(B-Y)、(R-Y)分别编码成PCM形式。
复合编码的优点是码率低些,设备较简单,适用于在模拟系统中插入单个数字设备的情况。它的缺点是由于数字电视的抽样频率必须与彩色副载频保持一定的关系,而各种制式的副载频各不相同,难以统一。采用复合编码时由抽样频率和副载频间的差拍造成的干扰将影响图像的质量。
分量编码的优点是编码与制式无关,只要抽样频率与行频有一定的关系,便于制式转换和统一,而且由于Y、(R-Y)、(B-Y)分别编码,可采用时分复用方式,避免亮色互串,可获得高质量的图像。在分量编码中,亮度信号用较高的码率传送,两个色差信号的码率可低一些 ,但总的码率比较高,设备价格相应较贵。
(2)数字视频信号的抽样频率和格式现行的扫描制式主要有625行/50场和525行/60场两种,它们的行频分别为15625赫和15734.265赫。ITU-R建议的分量编码标准的亮度抽样频率为13.5兆赫,这恰好是上述两种行频的整数倍,对于625行/50场,每行的抽样点数为个,对于525行/60场,每行的抽样点数为个,按照国际现行电视制式,亮度信号最大带宽是6兆赫。根据奈奎斯特抽样定理,抽样频率至少要大于2×6=12兆赫,因此取13.5兆赫也是合适的。
由于色差信号的带宽比亮度信号窄得多,所以在分量编码时两个色差信号的抽样频率可以低一些,同时也考虑到抽样的样点结构满足正交结构的要求,ITU-R建议两个色差信号的抽样频率均为亮度信号抽样频率的一半,即6.75兆赫,每行的样值点数也是亮度信号样值点数的一半,即分别为432个/行和429个/行。因此,对演播室数字电视设备进行分量编码的标准是:亮度信号的抽样频率是13.5兆赫,两个色差信号的抽样频率是6.75兆赫,其抽样频率之比为4:2:2,因此也称为4:2:2格式。对于用于信号源信号处理的质量要求更高的设备,还可以采用4:4:4的抽样关系。