【数据挖掘】决策树之CART (Classification and Regression Trees)分类与回归树

    决策树是一种简单的机器学习方法,它是完全透明的分类观测方法,经过训练后由一系列if-then判断语句组成一棵树。

#!/usr/bin/python
my_data=[['slashdot','USA','yes',18,'None'],
        ['google','France','yes',23,'Premium'],
        ['digg','USA','yes',24,'Basic'],
        ['kiwitobes','France','yes',23,'Basic'],
        ['google','UK','no',21,'Premium'],
        ['(direct)','New Zealand','no',12,'None'],
        ['(direct)','UK','no',21,'Basic'],
        ['google','USA','no',24,'Premium'],
        ['slashdot','France','yes',19,'None'],
        ['digg','USA','no',18,'None'],
        ['google','UK','no',18,'None'],
        ['kiwitobes','UK','no',19,'None'],
        ['digg','New Zealand','yes',12,'Basic'],
        ['slashdot','UK','no',21,'None'],
        ['google','UK','yes',18,'Basic'],
        ['kiwitobes','France','yes',19,'Basic']]
    上例代码中为构建决策树的训练数据。  

class decisionnode:#决策树节点结构
  def __init__(self,col=-1,value=None,results=None,tb=None,fb=None):
    self.col=col#被测试规则索引
    self.value=value#要被测试的值
    self.results=results#测试结果
    #tb,fb是决策树节点,tb为true时的节点,fb为false的节点
    self.tb=tb
    self.fb=fb
#训练决策树:CART (Classification and Regression Trees)分类与回归树
#1)建立根节点
#2)遍历表中所有数据,选择最好的变量划分数据
def devideset(rows,column,value):#column为栏位在row的索引,value为此栏位的值
    split_function=None
    if isinstance(value,int) or isinstance(value,float):
        split_function=lambda row:row[column]>=value
    else:
        split_function=lambda row:row[column]==value
    #根据split_function划分    
    set1=[row for row in rows if split_function(row)]
    set2=[row for row in rows if not split_function(row)]
    return (set1,set2) 
#没row中最后一个栏位的个数
def uniquecount(rows):
    result={}
    for row in rows:
        r = row[len(row) - 1]
        if r not in result: result[r]=0
        results[r]+=1
    return result
#整个rows随机放置item到错误category中的可能性
def giniimpurity(rows):
    total = len(rows)
    counts=uniquecount(rows)
    imp=0
    for k1 in counts:
        #计算k1放到错误category中的可能性 
        p1=float(counts[k1])/total
        for k2 in counts:
            if k1==k2:continue
            p2=float(counts[k2])/total
            imp+=p1*p2
    return imp
#sum(p(x)*log2(p(x)))  
def entropy(rows):
    from math import log
    log2=lambda x:log(x)/log(2)
    results=uniquecounts(rows)
    ent=0.0
    for r in results.keys():
        p=float(results[r])/len(rows)
        ent+=p*log2(p)        
    return ent

决策树的构建

    1)遍历数据中的每个item,找出最优的规则

    2)对最优的规则建立节点,递归构建其左右子树

#递归构建决策树
def buildtree(rows,scoref=entropy):
    if len(rows)==0:return decisionnode()
    current_score=scoref(rows)
    #设置变量,跟踪最好的规则
    best_gain=0
    best_criteria=None
    best_sets=None
    #record的栏 item数
    column_count=len(row[0])-1
    for col in range(0,column_count):
        #生成
        column_values={}
        for row in rows:
            column_values[row[col]]=1
        #尝试为rows中的每个记录的第col个field划分set    
        for value in column_values.keys():
             #划分后的set
            (set1,set2)=devideset(rows,col,value)
            #划分后的长度比例
            p=float(len(set1))/len(rows)
            #权重得分
            gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)
            #找到了最好的规则
            if gain>best_gain and len(set1)>0 and len(set2)>0:
                best_gain=gain
                best_criteria=(col,value)
                best_sets=(set1,set2)
    #取最好的规则,并对划分后的子集合进行递归构建决策树            
    if best_gain>0:
        trueBranch=buildtree(best_sets[0])
        falseBranch=buildtree(best_sets[1])
        return decisionnode(col=best_criteria[0],value=best_criteria[1],
                            tb=trueBranch,fb=falseBranch)
    else:
        return decisionnode(results=uniquecounts(rows))  

#利用决策树来对observation进行归类
def classify(observation,tree):
    if tree.results != None:
        return tree.results
    v = observation[tree.col]
    branch = None
    #查找分支,此处算法与划分set规则一致
    if isinstance(v,int) or isinstance(v,float):
        if v>=tree.value: 
            branch=tree.tb
        else: 
            branch=tree.fb
    else:
        if v==tree.value: branch=tree.tb
        else: branch=tree.fb        
    return classify(observation,brance)

你可能感兴趣的:(【数据挖掘】决策树之CART (Classification and Regression Trees)分类与回归树)