Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 3966 | Accepted: 680 |
Description
Input
Output
Sample Input
3 60
Sample Output
12 15
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<algorithm>
//看情况选择下列两个
//#define bignum unsigned long long
#define bignum unsigned __int64
using namespace std;
//求a,b的最大公约数
bignum gcd(bignum a,bignum b)
{
return b==0?a:gcd(b,a%b);
}
//求a*b%c,因为a,b很大,所以要先将b写成二进制数,再加:例如3*7=3*(1+2+4);
bignum mulmod(bignum a,bignum b,bignum c)
{
bignum cnt=0,temp=a;
while(b)
{
if(b&1) cnt=(cnt+temp)%c;
temp=(temp+temp)%c;
b>>=1;
}
return cnt;
}
//求a^b%c,再次将b写成二进制形式,例如:3^7=3^1*3^2*3^4;
bignum powmod(bignum a,bignum b,bignum c)
{
bignum cnt=1,temp=a;
while(b)
{
if(b&1) cnt=mulmod(cnt,temp,c);//cnt=(cnt*temp)%c;
temp=mulmod(temp,temp,c);//temp=(temp*temp)%c;
b>>=1;
}
return cnt;
}
//Miller-Rabin测试n是否为素数,1表示为素数,0表示非素数
int pri[10]={2,3,5,7,11,13,17,19,23,29};
bool Miller_Rabin(bignum n)
{
if(n<2) return 0;
if(n==2) return 1;
if(!(n&1)) return 0;
bignum k=0,m;
m=n-1;
while(m%2==0) m>>=1,k++;//n-1=m*2^k
for(int i=0;i<10;i++)
{
if(pri[i]>=n) return 1;
bignum a=powmod(pri[i],m,n);
if(a==1) continue;
int j;
for(j=0;j<k;j++)
{
if(a==n-1) break;
a=mulmod(a,a,n);
}
if(j<k) continue;
return 0;
}
return 1;
}
//pollard_rho 大整数分解,给出n的一个非1因子,返回n是为一次没有找到
bignum pollard_rho(bignum C,bignum N)
{
bignum I, X, Y, K, D;
I = 1;
X = rand() % N;
Y = X;
K = 2;
do
{
I++;
D = gcd(N + Y - X, N);
if (D > 1 && D < N) return D;
if (I == K) Y = X, K *= 2;
X = (mulmod(X, X, N) + N - C) % N;
}while (Y != X);
return N;
}
//找出N的最小质因数
bignum rho(bignum N)
{
if (Miller_Rabin(N)) return N;
do
{
bignum T = pollard_rho(rand() % (N - 1) + 1, N);
if (T < N)
{
bignum A, B;
A = rho(T);
B = rho(N / T);
return A < B ? A : B;
}
}
while(1);
}
//N分解质因数,这里是所有质因数,有重复的
bignum AllFac[1100];
int Facnum;
void findrepeatfac(bignum n)
{
if(Miller_Rabin(n))
{
AllFac[++Facnum]=n;
return ;
}
bignum factor;
do
{
factor=pollard_rho(rand() % (n - 1) + 1, n);
}while(factor>=n);
findrepeatfac(factor);
findrepeatfac(n/factor);
}
//求N的所有质因数,是除去重复的
bignum Fac[1100];
int num[1100];
int len;
void FindFac(bignum n)
{
len=0;
//初始化
memset(AllFac,0,sizeof(AllFac));
memset(num,0,sizeof(num));
Facnum=0;
findrepeatfac(n);
sort(AllFac+1,AllFac+1+Facnum);
Fac[0]=AllFac[1];
num[0]=1;
for(int i=2;i<=Facnum;i++)
{
if(Fac[len]!=AllFac[i])
{
Fac[++len]=AllFac[i];
}
num[len]++;
}
}
//dfs将key分解成两个互质的数的乘积,并且使这两个数和最小
/*
bignum Fac[200];
int num[200];
int len;(0-len);*/
bignum res_a,res_b;
bignum _min,key,com;
void dfs(int cur,bignum val)
{
if(cur==len+1)
{
bignum a=val,b=key/val;
if(gcd(a,b)==1)
{
a*=com,b*=com;
if(a+b<_min)
{
_min=a+b;
res_a=a<b ? a : b;
res_b=a>b ? a : b;
}
}
return ;
}
bignum s=1;
for(int i=0;i<=num[cur];i++)
{
if(val*s>=_min)
{
return ;
}
dfs(cur+1,val*s);
s*=Fac[cur];
}
}
int main ()
{
srand(time(NULL));
bignum l,g;
while(scanf("%I64u%I64u",&g,&l)!=EOF)
{
if(l==g)
{
printf("%I64u %I64u/n",g,l);
continue;
}
//初始化
key=l/g;
FindFac(key);
//初始化
_min=(1<<63)-1;com=g;
dfs(0,1);
printf("%I64u %I64u/n",res_a,res_b);
}
return 0;
}