蚁群算法(ant colony optimization, ACO)

蚁群算法模拟:http://afoxlittle.blogbus.com/logs/37299595.html

【原理解释转自百度百科】

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

预期的结果:

  各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向 环境释放 一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。


原理:

  设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。
  然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是 人工生命 、复杂性科学解释的规律!那么,这些简单规则是什么呢?


下面详细说明:

1、范围:

  蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。

2、环境:

  蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的 环境信息 。环境以一定的速率让信息素消失。

3、觅食规则:

  在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁都会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。

4、移动规则:

  每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。

5、避障规则:

  如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。

6、播撒信息素规则:

  每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
  根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。


问题:

  说了这么多,蚂蚁究竟是怎么找到食物的呢?? 在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
  当然,在有一只蚂蚁找到了食物的时候,大部分蚂蚁会沿着信息素很快找到食物的。但不排除会出现这样的情况:在最初的时候,一部分蚂蚁通过随机选择了同一条路径,随着这条路径上蚂蚁释放的信息素越来越多,更多的蚂蚁也选择这条路径,但这条路径并不是最优(即最短)的,所以,导致了迭代次数完成后,蚂蚁找到的不是最优解,而是次优解,这种情况下的结果可能对实际应用的意义就不大了。
  蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。


引申

  跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
  1、多样性
  2、正反馈
  多样性保证了蚂蚁在觅食的时候不至走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。
  引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。
  既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
  蚁群算法的实现
  下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
  其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。
  参数说明:
  最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
  错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。
  速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
  记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。


解读搜索引擎算法“蚁群算法”

  蚁群算法的由来:蚂蚁是地球上最常见、数量最多的昆虫种类之一,常常成群结队地出现在人类的日常生活环境中。这些昆虫的群体生物智能特征,引起了一些学者的注意。意大利学者M.Dorigo,V.Maniezzo等人在观察蚂蚁的觅食习性时发现,蚂蚁总能找到巢穴与食物源之间的最短路径。经研究发现,蚂蚁的这种群体协作功能是通过一种遗留在其来往路径上的叫做信息素(Pheromone)的挥发性化学物质来进行通信和协调的。化学通信是蚂蚁采取的基本信息交流方式之一,在蚂蚁的生活习性中起着重要的作用。通过对蚂蚁觅食行为的研究,他们发现,整个蚁群就是通过这种信息素进行相互协作,形成正反馈,从而使多个路径上的蚂蚁都逐渐聚集到最短的那条路径上。
  这样,M.Dorigo等人于1991年首先提出了蚁群算法。其主要特点就是:通过正反馈、分布式协作来寻找最优路径。这是一种基于种群寻优的启发式搜索算法。它充分利用了生物蚁群能通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。得到了具有NP难度的旅行商问题的最优解答。同时,该算法还被用于求解Job-Shop调度问题、二次指派问题以及多维背包问题等,显示了其适用于组合优化类问题求解的优越特征。
  多年来世界各地研究工作者对蚁群算法进行了精心研究和应用开发,该算法现己被大量应用于数据分析、机器人协作问题求解、电力、通信、水利、采矿、化工、建筑、交通等领域。
  蚁群算法之所以能引起相关领域研究者的注意,是因为这种求解模式能将问题求解的快速性、全局优化特征以及有限时间内答案的合理性结合起来。其中,寻优的快速性是通过正反馈式的信息传递和积累来保证的。而算法的早熟性收敛又可以通过其分布式计算特征加以避免,同时,具有贪婪启发
蚁群算法(ant colony optimization, ACO)_第1张图片

  图3蚁群在障碍物前经过一段时间后的情形

式搜索特征的蚁群系统又能在搜索过程的早期找到可以接受的问题解答。这种优越的问题分布式求解模式经过相关领域研究者的关注和努力,已经在最初的算法模型基础上得到了很大的改进和拓展。
  经过一定时间,从食物源返回的蚂蚁到达D点同样也碰到障碍物,也需要进行选择。此时A, B两侧的信息素浓度相同,它们仍然一半向左,一半向右。但是当A侧的蚂蚁已经完全绕过障碍物到达C点时,B侧的蚂蚁由于需走的路径更长,还不能到达C点。如图3所示。
  图3蚁群在障碍物前经过一段时间后的情形
  此时对于从蚁巢出发来到C点的蚂蚁来说,由于A侧的信息素浓度高,B侧的信息素较低,就倾向于选择A侧的路径。这
蚁群算法(ant colony optimization, ACO)_第2张图片

  图4 蚁群最终选择的路径

样的结果是A侧的蚂蚁越来越多,最终所有蚂蚁都选择这条较短的路径。如图4所示。
  图4 蚁群最终选择的路径
  上述过程,很显然是由蚂蚁所留下的信息素的“正反馈”过程而导致的。蚂蚁个体就是通过这种信息的交流来达到搜索食物的目的。蚁群算法的基本思想也是从这个过程转化而来的。
  蚁群算法的特点1)蚁群算法是一种自组织的算法。在系统论中,自组织和它组织是组织的两个基本分类,其区别在于组织力或组织指令是来自于系统的内部还是来自于系统的外部,来自于系统内部的是自组织,来自于系统外部的是他组织。如果系统在获得空间的、时间的或者功能结构的过程中,没有外界的特定干预,我们便说系统是自组织的。在抽象意义上讲,自组织就是在没有外界作用下使得系统墒增加的过程(即是系统从无序到有序的变化过程)。蚁群算法充分体现了这个过程,以蚂蚁群体优化为例子说明。当算法开始的初期,单个的人工蚂蚁无序的寻找解,算法经过一段时间的演化,人工蚂蚁间通过信息激素的作用,自发的越来越趋向于寻找到接近最优解的一些解,这就是一个无序到有序的过程。
  2)蚁群算法是一种本质上并行的算法。每只蚂蚁搜索的过程彼此独立,仅通过信息激素进行通信。所以蚁群算法则可以看作是一个分布式的多agent系统,它在问题空间的多点同时开始进行独立的解搜索,不仅增加了算法的可靠性,也使得算法具有较强的全局搜索能力。
  3)蚁群算法是一种正反馈的算法。从真实蚂蚁的觅食过程中我们不难看出,蚂蚁能够最终找到最短路径,直接依赖于最短路径上信息激素的堆积,而信息激素的堆积却是一个正反馈的过程。对蚁群算法来说,初始时刻在环境中存在完全相同的信息激素,给予系统一个微小扰动,使得各个边上的轨迹浓度不相同,蚂蚁构造的解就存在了优劣,算法采用的反馈方式是在较优的解经过的路径留下更多的信息激素,而更多的信息激素又吸引了更多的蚂蚁,这个正反馈的过程使得初始的不同得到不断的扩大,同时又引导整个系统向最优解的方向进化。因此,
  正反馈是蚂蚁算法的重要特征,它使得算法演化过程得以进行。
  4)蚁群算法具有较强的鲁棒性。相对于其它算法,蚁群算法对初始路线要求不高,即蚁群算法的求解结果不依赖子初始路线的选择,而且在搜索过程中不需要进行人工的调整。其次,蚁群算法的参数数目少,设置简单,易于蚁群算法应用到其它组合优化问题的求解。
  蚁群算法的应用进展以蚁群算法为代表的蚁群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法己越来越多地被应用于企业的运转模式的研究。美国五角大楼正在资助关于群智能系统的研究工作-群体战略(Swarm Strategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全进行。英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。群智能还被应用于工厂生产计划的制定和运输部门的后勤管理。美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约了1000万美元的费用开支。英国联合利华公司己率先利用群智能技术改善其一家牙膏厂的运转情况。美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转的机能。鉴于群智能广阔的应用前景,美国和欧盟均于近几年开始出资资助基于群智能模拟的相关研究项目,并在一些院校开设群体智能的相关课程。国内,国家自然科学基金”十五”期间学科交叉类优先资助领域中的认知科学及其信息处理的研究内容中也明确列出了群智能领域的进化、自适应与现场认知主题。
  蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,如,图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。
  在网络路由处理中,网络的流量分布不断变化,网络链路或结点也会随机地失效或重新加入。蚁群的自身催化与正向反馈机制正好符合了这类问题的求解特点,因而,蚁群算法在网络领域得到一定应用。蚁群觅食行为所呈现出的并行与分布特性使得算法特别适合于并行化处理。因而,实现算法的并行化执行对于大量复杂的实际应用问题的求解来说是极具潜力的。
  在某群体中若存在众多无智能的个体,它们通过相互之间的简单合作所表现出来的智能行为即称为集群智能(Swarm Intelligence)。互联网上的交流,不过是更多的神经元连接(人脑)通过互联网相互作用的结果,光缆和路由器不过是轴突和突触的延伸。从自组织现象的角度上看,人脑的智能和蚁群也没有本质上的区别,单个神经元没有智能可言,单个蚂蚁也没有,但是通过连接形成的体系,是一个智能体。(作者: 李精灵 编选:中国电子商务研究中心) [1]

【应用转自 维基百科】

应用

蚁群优化算法已应用于许多组合优化问题,包括蛋白质折叠或路由车辆的二次分配问题,很多派生的方法已经应用于实变量动力学问题,随机问题,多目标并行的实现。它也被用于产生货郎担问题的拟最优解。在图表动态变化的情况下解决相似问题时,他们相比模拟退火和遗传算法方法有优势;蚁群算法可以连续运行并适应实时变化。这在网络路由和城市交通系统中是有利的。 第一蚁群优化算法被称为“蚂蚁系统”,它旨在解决货郎担问题,其目标是要找到一系列城市的最短遍历路线。总体算法相对简单,它基于一组蚂蚁,每只完成一次城市间的遍历。在每个阶段,蚂蚁根据一些规则选择从一个城市移动到另一个:它必须访问每个城市一次;一个越远的城市被选中的机会越少(能见度更低);在两个城市边际的一边形成的信息素越浓烈,这边被选择的概率越大;如果路程短的话,已经完成旅程的蚂蚁会在所有走过的路径上沉积更多信息素,每次迭代后,信息素轨迹挥发。

[编辑]调度问题

车间作业调度问题( JSP )

开放式车间调度问题( OSP )

排列流水车间问题( PFSP )

单机总延迟时间问题( SMTTP )

单机总加权延迟问题( SMTWTP )

资源受限项目调度问题( RCPSP )

车间组调度问题( GSP )

附带依赖安装时间顺序的单机总延迟问题( SMTTPDST )

附带顺序相依设置/转换时间的多阶段流水车间调度问题( MFSP )

[编辑]车辆路径问题

限量车辆路径问题( CVRP )

多站车辆路径问题( MDVRP )

周期车辆路径问题( PVRP )

分批配送车辆路径问题( SDVRP )

随机车辆路径问题( SVRP )

装货配送的车辆路径问题( VRPPD )

带有时间窗的车辆路径问题( VRPTW)

依赖时间的时间窗车辆路径问题( TDVRPTW )

带时间窗和复合服务员工的车辆路径问题( VRPTWMS )

[编辑]分配问题

二次分配问题( QAP)

广义分配问题(GAP)

频率分配问题( FAP )

冗余分配问题( RAP )

[编辑]设置问题

覆盖设置问题( SCP )

分区设置问题( SPP )

约束重量的树图划分问题( WCGTPP )

加权弧L-基数树问题( AWlCTP )

多背包问题(MKP)

最大独立集问题( MIS )

[编辑]其他

面向关系的网络路由

无连接网络路由

数据挖掘

项目调度中的贴现现金流

分布式信息检索

网格工作流调度问题

图像处理

系统识别

蛋白质折叠

电子电路设计

[编辑]相关的方法

遗传算法(GA)支持一系列的解决方案。解的合并或突变增加了解集,其中质量低劣的解被丢弃,寻找高级解决方案的过程模仿了这一演变。

模拟退火(SA)是一个全局优化相关​​的通过产生当前解的相邻解来遍历搜索空间的技术。高级的相邻解总是可接受的。低级的相邻解可能会根据基于质量和温度参数德差异的概率被接受。温度参数随着算法的进程被修改以改变搜索的性质。

反作用搜索优化的重点在于将机器学习与优化的结合,加入内部反馈回路以根据问题、根据实例、根据当前解的附近情况的特点自动调整算法的自由参数。

禁忌搜索( TS )类似于模拟退火,他们都是通过测试独立解的突变来遍历解空间的。而模拟退火算法对于一个独立解只生成一个突变,禁忌搜索会产生许多变异解并且移动到产生的解中的符合度最低的一个。为了防止循环并且促进在解空间中的更大进展,由部分或完整的解组建维系了一个禁忌列表。移动到元素包含于禁忌列表的解是禁止,禁忌列表随着解遍历解空间的过程而不断更新。

人工免疫系统(AIS)算法仿照了脊椎动物的免疫系统。

粒子群优化(PSO ),群智能方法

引力搜索算法( GSA ),群智能方法

蚁群聚类方法( ACCM中) ,这个方法利用了聚类方法扩展了蚁群优化。

随机传播搜索( SDS ),基于代理的概率全局搜索和优化技术,最适合于将目标函数分解成多个独立的分布函数的优化问题。


你可能感兴趣的:(蚂蚁算法,蚁群算法,ACO)