小波分析的起源、发展与应用

 小波分析 (wavelet Analysis) 是 20 世纪 80 年代中期发展起来的一门数学理论和方法,由法国科学家 Grossman 和 Morlet 在进行地震信号分析时提出的,随后迅速发展。 1985 年 Meyer 在一维情形下证明了小波函数的存在性 , 并在理论上作了深入研究。 Mallat 基于多分辨分析思想,提出了对小波应用起重要作用的Mallat算法,它在小波分析中的地位相当于FFT 在经典Fourier变换中的地位。小波分析理论的重要性及应用的广泛性引起了科技界的高度重视。小波分析的出现被认为是傅立叶分析的突破性进展,在逼近论、微分方程、模识识别、计算机视觉、图像处理、非线性科学等方面使用小波分析取得于许多突破性进展。小波变换的基本思想类似于Fourier变换,就是用信号在一簇基函数形成空间上的投影表征该信号。经典的Fourier 变换把信号按三角正、余弦基展开,将任意函数表示为具有不同频率的谐波函数的线性迭加,能较好地描述信号的频率特性,但它在空域(时域)上无任何分辨,不能作局部分析。这在理论和应用上都带来了许多不足。为了克服这一缺陷,提出了加窗Fourier变换。 通过引入一个时间局部化“窗函数”改进了Fourier变换的不足,但其窗口大小和形状都是固定的,没有从根本上弥补Fourier变换的缺陷。而小波变换在时域和频域同时具有良好的局部化性能,有一个灵活可变的时间-频率窗,它与Fourier变换、加窗Fourier变换相比,能更有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。
小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。
事实上小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图象处理方面的图象压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
 (1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
 (2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
 (3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

你可能感兴趣的:(重构,小波分析,小波变换)