- 宇树科技纯技能要求总结
极梦网络无忧
杂谈科技
一、嵌入式开发与硬件设计核心技能嵌入式开发:精通C/C++,熟悉STM32、ARM开发熟悉LinuxBSP开发及驱动框架(SPI/UART/USB/FLASH/Camera/GPS/LCD)掌握主流平台(英伟达、全志、瑞芯微等)硬件设计:精通数字/模拟电路设计,熟悉PCB绘制工具(Altium等)掌握MOS驱动电路、变压器设计及EMC优化熟悉制板/贴片流程及焊接扩展技能电机控制:熟悉有感FOC算法
- 链表操作:分区与回文判断
共享家9527
数据结构数据结构c语言开发语言leetcode链表
目录链表分区(Partition)功能概述代码实现要点与难点注意事项链表回文判断(PalindromeList)功能概述代码实现要点与难点注意事项总结在链表相关的算法问题中,理解链表的基本结构和操作至关重要。今天我们深入探讨两个经典的链表问题:链表分区和链表回文判断,通过详细分析代码实现,理解其中的要点、难点和注意事项。作者主页:共享家9527-CSDN博客链表分区(Partition)功能概述链
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- 目前市场上主流的机器视觉的框架有哪些?他们的特点及优劣
yuanpan
机器学习计算机视觉
目前市场上主流的机器视觉框架和工具可以分为商业软件、开源工具和深度学习框架三大类。以下是它们的总结及特点对比:1.商业软件(1)Halcon(MVTec)特点:专注于工业机器视觉,提供高精度、高效率的算法。支持复杂的工业应用,如缺陷检测、3D视觉、深度学习等。提供图形化开发工具HDevelop和多种编程接口。优势:算法优化好,适合实时工业应用。硬件兼容性强,支持多种工业相机和设备。劣势:商业软件,
- halcon里3d平面度检测程序_激光三角测量法在工业视觉检测上的应用
jiago 王佳东fr
点击上方“3D视觉工坊”,选择“星标”干货第一时间送达激光三角测量法,是工业视觉领域较为常用也是比较容易理解的一种3D检测算法。本文主要从应用层次来阐述,包括相机和激光选型、搭接方式的优劣点分析、软件开发过程中的注意事项等。1.原理及演示将一条单线细激光光线投射到物体表面,由于物体表面高度发生变化,使得激光线发生了弯曲,根据这个线的变形,可以计算出精确的物体表面三维轮廓。如下图所示,基本组成结构有
- 并查集实现算法
C嘎嘎嵌入式开发
算法算法服务器c++
畅通工程2题目描述:某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?输入描述:测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N(#include#include#include#includ
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- Ada语言的数据结构与算法
尤宸翎
包罗万象golang开发语言后端
Ada语言的数据结构与算法引言在计算机科学的领域里,数据结构与算法是核心的组成部分,围绕着如何高效地存储和处理数据。这些概念不仅是程序设计的重要基础,也是提高程序性能的关键。Ada是一种强类型、结构化的编程语言,早在20世纪80年代就被设计用于军用和实时系统。由于其高可靠性和可维护性,Ada逐渐在航空航天、军事和其他需要高安全性的领域获得了广泛应用。本文将探讨Ada语言中的数据结构和算法,包括常见
- Camera常用算法介绍1
记录美好
android相机学习算法经验分享智能手机
Camera常用数据格式及算法介绍1二、Camera常用算法介绍2.1基础图像处理算法2.1.1HDR算法2.1.1.1HDR算法概述2.1.1.2发展历程2.1.1.2.1传统多帧合成阶段(2010年代初期)2.1.1.2.2.算法优化阶段(2016-2020年)2.1.1.2.3实时处理阶段(2020年至今)2.1.1.3技术原理2.1.1.3.1多帧采集2.1.1.3.2图像合成2.1.1.
- 初探 Threejs 物理引擎CANNON,解锁 3D 动态魅力
伶俜Monster
Threejswebgl前端3dthreejscannon.js
简介Cannon.js是一个基于JavaScript的物理引擎,它可以在浏览器中模拟物理效果。它支持碰撞检测、刚体动力学、约束等物理效果,可以用于创建逼真的物理场景和交互。参考文档官方示例原理Cannon.js使用了欧拉角来表示物体的旋转,而不是四元数。这使得它在处理旋转时更加直观和易于理解。Cannon.js还支持多种碰撞检测算法,包括离散碰撞检测和连续碰撞检测。Cannon.js还支持多种约束
- 【产品小白】什么是AI产品经理
百事不可口y
产品经理的一步一步人工智能产品经理学习产品运营内容运营用户运营
一、AI产品经理的定义与角色定位AI产品经理是人工智能技术与商业应用之间的核心桥梁,负责将复杂的AI技术转化为满足市场需求的产品。需同时具备技术理解力、商业洞察力和用户思维,既要参与算法选型与数据建模,又要定义产品功能与市场策略,是贯穿产品全生命周期的关键角色。与传统互联网产品经理相比,AI产品经理的独特之处在于:技术深度参与:需理解机器学习、自然语言处理(NLP)、计算机视觉等技术原理,并参与数
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 每日一题——二叉树的直径
tt555555555555
面经算法题C语言数据结构算法leetcode
二叉树的直径问题描述示例示例1示例2提示问题分析算法设计代码实现复杂度分析测试用例测试用例1测试用例2总结问题描述给定一棵二叉树的根节点,返回该树的直径。二叉树的直径是指树中任意两个节点之间最长路径的长度。这条路径可能经过也可能不经过根节点root。两节点之间路径的长度由它们之间边数表示。示例示例1输入:root=[1,2,3,4,5]输出:3解释:最长路径的长度为3,例如路径[4,2,1,3]或
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- 【算法学习之路】12.DFS
零零时
算法学习之路深度优先算法学习c++开发语言数据结构全排列
DFS前言一.DFS简介二.思路三.缺点四.三种类型五.题目1.2前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!一.DFS简介1.深度优先搜索,是一种用于遍历或搜索树或图的算法。所谓深度优先,就是说每次搜尝试向更深的节点走。2.在搜索算法中,该DFS常常
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 成为编程大佬!!----->数据结构与算法(2)——顺序表!!
Elnaij
算法数据结构c语言
前言:线性表是数据结构与算法的重中之重,所有具有线性逻辑结构的数据结构,都能称为线性表。这篇文章我们先来讨论线性表中的顺序表,顺序表和线性表都是后续实现栈,树,串和图等等结构的重要基础。目录❀简单介绍线性表❀顺序表❀顺序表的存储❀动态存储❀静态存储❀静态存储与动态存储的优缺点❀顺序表操作❀1.初始化顺序表❀2.销毁顺序表❀3.插入数据❀插入数据之判断已满否❀插入操作之尾插❀插入操作之头插❀插入数据
- 字符串模式匹配——Brute-Force暴力查找算法以及KMP算法具象图解,超级详细!!
Elnaij
算法数据结构c语言
目录前言1.串的模式匹配算法目的1.1Brute-Force算法图解Brute-force算法Brute-force暴力查找算法的弊端1.2KMP算法next数组1.2.1Getnext——求next数组的函数图解Getnext函数Getnext函数总结1.2.2KMP模式匹配操作KMP匹配过程图解KMP算法总结结束语:前言这两个算法,尤其是KMP算法,可以说是让许多算法小白头痛的了。如果你也十分
- HarmonyOS开发,A持有B,B引用A的场景会不会导致内存泄漏,代码示例告诉你答案
MardaWang
HarmonyOSNEXTOpenHarmonyharmonyos华为
问题:A持有B,B引用A的场景会不会导致内存泄漏?答案:方舟虚拟机的内存管理和GC采用的是根可达算法,根可达算法可以解决循环引用问题,不会导致A引用B,B引用A的内存泄漏。根可达算法原理根可达算法以一系列被称为“根对象”(如栈中的局部变量、静态变量等)作为起始点,从这些根对象开始向下搜索,能够被搜索到的对象被认为是可达对象,而那些无法被搜索到的对象则被判定为不可达对象,会在垃圾回收时被清理。所以,
- 【etcd】
茉菇
etcd数据库
一、ETCD简介etcd是一个由CoreOS团队开发的开源项目,旨在提供一个高可用的、分布式的、一致的键值存储,用于配置共享和服务发现。尽管它看起来像一个键值存储,但etcd的设计目标远远超出了传统数据库的功能范围。etcd的核心特性包括:高可用性和容错性:etcd使用Raft共识算法来确保数据的一致性和服务的高可用性。这意味着即使集群中的某些节点出现故障,etcd也能继续提供服务,并保证数据的一
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- 【打卡d5】快速排序 归并排序
吧啦吧啦吡叭卜
排序算法算法java
快速排序算法模板——模板题AcWing785.快速排序voidquick_sort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[(l+r)/2];while(ix);if(i=r)return;intmid=(l+r)>>1;merge_sort(q,l,mid);merge_sort(q,mid+1,r);intk=0,i=l,j=mi
- 什么是机器视觉3D引导大模型
视觉人机器视觉
机器视觉3D3d数码相机机器人人工智能大数据
机器视觉3D引导大模型是结合深度学习、多模态数据融合与三维感知技术的智能化解决方案,旨在提升工业自动化、医疗、物流等领域的操作精度与效率。以下从技术架构、行业应用、挑战与未来趋势等方面综合分析:一、技术架构与核心原理多模态数据融合与深度学习3D视觉引导大模型通常整合RGB图像、点云数据、深度信息等多模态输入,通过深度学习算法(如卷积神经网络、Transformer)进行特征提取与融合。例如,油田机
- 探索AI知识库的无限潜力:定义、应用与未来展望
知识库知识库管理知识库软件
一、AI知识库的定义AI知识库,作为人工智能技术与传统知识库概念的融合,是指利用人工智能算法和技术构建、管理和维护的信息存储系统。它不仅包含了大量的结构化、半结构化和非结构化数据,还具备智能检索、推理分析、自我学习和优化等高级功能。AI知识库通过模拟人类的认知过程,实现了对知识的有效组织和高效利用,为各种应用场景提供了强大的支持。二、AI知识库的应用1.客户服务与支持在电子商务领域,AI知识库的应
- 【Go基础】Go入门与实践资源帖
小超人冲鸭
golang开发语言后端
看到好的持续更新……Go系统教程从语法讲起:李文周博客七天快速上手项目Go测试驱动开发博客孔令飞项目开发实战课程,孔令飞图文教程《Go语言高级编程》书籍Go算法刷题模板Go实战项目KV系统crawlab分布式爬虫平台seaweedfs分布式文件系统Cloudreve云盘系统gfast后台管理系统(基于GoFrame)alist多存储文件列表(基于Gin、React)Yearning开源SQL审核平
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep