应用程序中不同类型的Surface,在FrameWorks本地层的SurfaceFlinger中,分别对应着不同的Layer类,本文主要是讨论这几种Layer的实现和差异。
默认地,创建普通的窗口Surface,在SurfaceFlinger中会创建Layer类,如果想创建LayerDim或LayerBlur,应用程序需要在绑定View之前设置一下窗口的标志位:
创建LayerDim效果:
@Override创建LayerBlur效果:
@Override
protected void onCreate(Bundle icicle) {
// Be sure to call the super class.
super.onCreate(icicle);
// Have the system blur any windows behind this one.
getWindow().setFlags(WindowManager.LayoutParams.FLAG_BLUR_BEHIND,
WindowManager.LayoutParams.FLAG_BLUR_BEHIND);
......
setContentView(......);
}
相应地,在SufaceFlinger中,会根据Java层传入的标志,创建不同的Layer:
sp<ISurface> SurfaceFlinger::createSurface(ClientID clientId, int pid,
const String8& name, ISurfaceFlingerClient::surface_data_t* params,
DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
sp<LayerBaseClient> layer;
sp<LayerBaseClient::Surface> surfaceHandle;
......
switch (flags & eFXSurfaceMask) {
case eFXSurfaceNormal:
if (UNLIKELY(flags & ePushBuffers)) {
layer = createPushBuffersSurfaceLocked(client, d, id,
w, h, flags);
} else {
layer = createNormalSurfaceLocked(client, d, id,
w, h, flags, format);
}
break;
case eFXSurfaceBlur:
layer = createBlurSurfaceLocked(client, d, id, w, h, flags);
break;
case eFXSurfaceDim:
layer = createDimSurfaceLocked(client, d, id, w, h, flags);
break;
}
if (layer != 0) {
layer->setName(name);
setTransactionFlags(eTransactionNeeded);
surfaceHandle = layer->getSurface();
........
}
return surfaceHandle;
}
下面的图展示了Layer类之间的继承关系:
ISurface接口其实非常简单,只有几个函数:
LayerBaseClient的派生类中,会有一个内嵌类,继承LayerBaseClient::Surface,然后根据需要会实现该接口的相应函数。
Layer类是使用最多的一个,普通的应用程序窗口都会对应一个Layer类,Layer类的内嵌类SurfaceLayer继承了ISurface接口,创建Layer类时,将会返回一个ISurface接口给创建者。并且,Layer类在创建时会建立两个GraphicBuffer对象,这两个Buffer在不同的时刻分别被作为frontbuffer和backbuffer,frontbuffer用于本窗口的画图操作,backbuffer用于所有窗口的混合操作。但是两个GraphicBuffer对象在创建时并没有真正地分配内存,而是在第一次lockBuffer时才正式通过ISurface接口的requestBuffer方法申请内存,当窗口的大小发生变化时,也要重新分配适合窗口大小的内存。Layer类的主要成员函数如下:
LayerDim和LayerBlur,他们的显示内容是固定不变的(透明的黑色),所以不需要分配两个GraphicBuffer对象,因此它们也没有继承自LayerBaseClient::Surface的内嵌类,而是直接使用LayerBaseClient::Surface类作为它们的ISurface接口。以LayerDim为例跟踪一下它的Draw过程:
在OnDraw()中把第一步生成的贴图混合到OpenGL的主表面中
void LayerDim::onDraw(const Region& clip) const
{
const State& s(drawingState());
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
if (s.alpha>0 && (it != end)) {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
......
/* 设置透明值 */
glColor4x(0, 0, 0, alpha);
#if defined(DIM_WITH_TEXTURE) && defined(EGL_ANDROID_image_native_buffer)
if (sUseTexture) {
glBindTexture(GL_TEXTURE_2D, sTexId);
glEnable(GL_TEXTURE_2D);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
const GLshort texCoords[4][2] = {
{ 0, 0 },
{ 0, 1 },
{ 1, 1 },
{ 1, 0 }
};
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_SHORT, 0, texCoords);
} else
#endif
{
glDisable(GL_TEXTURE_2D);
}
GLshort w = sWidth;
GLshort h = sHeight;
const GLshort vertices[4][2] = {
{ 0, 0 },
{ 0, h },
{ w, h },
{ w, 0 }
};
glVertexPointer(2, GL_SHORT, 0, vertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}