从零开始学习OpenGL ES之三 – 透视

现在你已经知道OpenGL是怎样绘图的了,让我们回头谈谈一个很重要的概念:OpenGL视口(viewport) 。 许多人对3D编程还很陌生,那些使用过像Maya, Blender, 或 Lightwave之类3D图形程序的人都试图在OpenGL虚拟世界中找到“摄像机”。但OpenGL并不存在这样的东西。它所有的是在3D空间中定义 可见的物体。虚拟世界是没有边界的,但计算机不可能处理无限的空间,所以OpenGL需要我们定义一个可以被观察者看到的空间。

如果我们从大部分3D程序具有的摄像机对象的角度出发来考虑,视口端点的中心就是摄像机。也就是观察者站的位置。它是一个观察虚拟世界的虚拟窗口。 观察者可见的空间有一定限制。她看不见她身后的东西。她也看不见视角之外的东西。而且她还不能看见太远的东西。可以认为视口是通过“观察者可见”参数所确 定的形状。很简单,对吗?

不幸的是,并非如此。要解释原因,我们首先需要讨论的是在OpenGL ES中具有的两种不同的视口类型:正交和透视。

 

正交和透视

为更好地理解,我们先看看铁路轨道,好吗?要正常工作,铁路的两条铁轨之间必须具有固定的距离。其固定的距离是由铁轨根据承载什么样的火车而决定。重要的是铁轨(以及火车的轮子)必须具有相同的距离。如果不是这样,火车根本不可能运行。

如果我们从上方观察铁轨,这个事实很明显。

但是如果你站在铁轨上向下观察会怎么样。不要说“你会被火车撞”,我假设你会足够聪明,会在没有火车开动时进行观察。

是的,铁轨看上去越远与靠近。感谢二年级美术老师,可能你已经知道这就是所谓透视(perspective )。

OpenGL可以设定的视口中的一种就是使用透视。当你这样设置视口时,物体会随着移远而越来越小,视线会在物体移离观察者时最终交汇。这是对真实视觉的模拟;人们就是以这种方式观察世界的。

另一种看设置的视口称为正交(orthogonal) 视口。这种类型的视口,视线永远不会交汇而且物体不会改变其大小。没有透视效果。对于CAD程序以及其他各种目的是十分方便的,但因为它不像人们眼睛观察的方式所以看上去是不真实的,通常也不是你所希望的。

对于正交视口,你看将摄像机置于铁轨上,但这些铁轨永远不会交汇。它们将随着远离你的视线而继续保持等距。即使你定义了一个无限大的视口(OpenGL ES并不支持),这些线仍保持等距。

正交视口的优点是容易定义。因为线永不交汇,你只需定义一个像箱子一样的3D空间,像这样:

设置正交视口

在使用glViewport()函数定义视口前,你可以通过 glOrthof() 通知 OpenGL ES你希望使用正交视口。下面是一个简单的例子:

    CGRect
 rect = view.bounds;
glOrthof (-1.0 , // Left
1.0 , // Right
-1.0 / (rect.size.width / rect.size.height)
, // Bottom
1.0 / (rect.size.width / rect.size.height) , // Top
0.01, // Near
10000.0);
// Far
glViewport (0 , 0 , rect.size.width, rect.size.height) ;

这不难理解。首先我们获取视窗的尺寸。然后设定视口空间的宽度为两个单位,沿x轴从 -1.0 到 +1.0。很容易吧。

接着怎样设定底部和顶部?我们希望我们定义空间的X和Y坐标的宽高比与视窗的宽高比(也就是iPhone全屏时的宽高比)一样。由于iPhone的宽度与高度不同,我们需要确保视口的x和y坐标不同,但遵循一样的比例。

之后,我们定义了 near(远)和 far(近) 范围来描述观察的深度。 near 参数说明了视口开始的位置。如果我们站在原点处,视口就位于我们的面前,所以习惯上使用 .01.001 作为正交视口的起点。这使得视口处于原点“前方”一点点。far 可以根据你程序的需要来设定。如果你程序中的物体永远不会远过20个单位,那么你不需要将 far设置为 20,000 个单位。具体的数字随程序的不同而不同。

调用 glOrthof()之后, 我们使用视窗矩形来调用 glViewport()。

这是比较简单的情况。

设置透视视口

另一种情况就不那么简单,这里是原因。如果物体随着远离观察者而变小,那么它和你定义的可见空间的形状有什么关系。随着视线越来越远,你可以看到更广阔的世界,所以如果你使用透视,那么你定义的空间将不是一个立方体。是的,当使用透视时可见空间的形状称为锥台(frustum) 。 是的,我知道,奇怪的名字。但却是真实的。我们的锥台看上去像这样:

请注意当我们离视口越来越远时(换句话说,当z值减小时),观察体的x和y坐标都会越来越大。

要设置透视视口,我们不使用 glOrthof(), 我们使用一个不同的函数 glFrustumf() 。此函数使用同样的六个参数。很容易理解,但我们应该怎样确定传递给 glFrustumf()的参数

nearfar 容易理解。你可以同样方式理解它们。near 使用类似 .001的数值,然后根据不同程序的需要确定 far 值。

但是 left , right , bottom , 和 top 呢? 为设置这些值,我们需要一点点数学计算。

要计算锥台,我们首先要理解视野(field of vision )的概念,它是由两个角度定义的。让我们这样 做:伸出双臂手掌合拢伸向前方。你的手臂现在指向你自己锥台的z轴,对吗?好,现在慢慢分开你的双臂。由于在你双臂展开时肩膀保持不动,你定义了一个逐渐 增大的角度。这就是用于定义观察锥台的两个角度之一。它定义了视野的宽度。另一个角度的定义原理一样,只是这次你向上下展开你的双臂。如果你的双手间距只 有三英寸,那么x角度将非常小。

这称为窄视野。

如果你双手分开两英尺,视野的宽度变得很大。

这就是所谓 宽视角(广角)。

如果用摄影术语描述,你可将视野当作虚拟相机的虚拟光圈的焦距。窄视野很像摄远镜头,它造就了一个缓慢增长的长锥台。宽视角就像广角镜,它造就了一个增长很快的锥台。

我们选择一个中间值,例如45°。 使用这个值,我们怎样计算我们的观察锥台?我们先看下两个角度中的一个。想象一下,从顶部看锥台是什么样子。下面是示意图:

从上向下看,它就像一个砍掉一个点的三角形。但对我们而言,它已经足够接近一个三角形。你还记得三角课上的正切吗?正切函数定义为直角对边与相邻边的比率。

但是,我们没有直角,是吗?

实际上,我们有两个直角… 如果我们沿z轴向下画一条直线的话:

中心虚线就是两个直角的“相邻边”。所以,锥台远端宽度的一半就是视野角度正切的一半。如果我们将此值乘以 near值,就可以得到 right值。 right值取反就是 left

我们希望视野具有与屏幕一样的长宽比,所以按照 glOrthof()中相同的方法(将 right 乘以屏幕的长宽比) 计算 top 和 bottom 值。代码如下:

CGRect
 rect = view.bounds;
GLfloat size = .01 * tanf (DEGREES_TO_RADIANS(45.0 ) / 2.0);

glFrustumf (-size, // Left
size, // Right
-size / (rect.size.width / rect.size.height)
, // Bottom
size / (rect.size.width / rect.size.height) , // Top
.01, // Near
1000.0);
// Far

注意: 关于 glFrustum() 怎样使用传递的参数计算锥台的形状将在我们讨论矩阵时讨论。现在,我们暂且相信计算是正确的,好吗?

让我们运用到程序中。我修改了上篇文章中最终的 drawView:方法,我们将沿z轴向下显示了三十个二十面体。下面是新的 drawView: 方法:

- (void )drawView:(GLView*)view;

{
static GLfloat rot = 0.0 ;

static const Vertex3D vertices[ ] = {
{0 , -0.525731 , 0.850651 } , // vertices[0]
{0.850651 , 0 , 0.525731 } , // vertices[1]
{0.850651 , 0 , -0.525731 } , // vertices[2]
{-0.850651 , 0 , -0.525731 } , // vertices[3]
{-0.850651 , 0 , 0.525731 } , // vertices[4]
{-0.525731 , 0.850651 , 0 } , // vertices[5]
{0.525731 , 0.850651 , 0 } , // vertices[6]
{0.525731 , -0.850651 , 0 } , // vertices[7]
{-0.525731 , -0.850651 , 0 } , // vertices[8]
{0 , -0.525731 , -0.850651 } , // vertices[9]
{0 , 0.525731 , -0.850651 } , // vertices[10]
{0 , 0.525731 , 0.850651 } // vertices[11]
}
;

static const Color3D colors[ ] = {
{1.0 , 0.0 , 0.0 , 1.0 } ,
{1.0 , 0.5 , 0.0 , 1.0 } ,
{1.0 , 1.0 , 0.0 , 1.0 } ,
{0.5 , 1.0 , 0.0 , 1.0 } ,
{0.0 , 1.0 , 0.0 , 1.0 } ,
{0.0 , 1.0 , 0.5 , 1.0 } ,
{0.0 , 1.0 , 1.0 , 1.0 } ,
{0.0 , 0.5 , 1.0 , 1.0 } ,
{0.0 , 0.0 , 1.0 , 1.0 } ,
{0.5 , 0.0 , 1.0 , 1.0 } ,
{1.0 , 0.0 , 1.0 , 1.0 } ,
{1.0 , 0.0 , 0.5 , 1.0 }
}
;

static const GLubyte icosahedronFaces[ ] = {
1 , 2 , 6 ,
1 , 7 , 2 ,
3 , 4 , 5 ,
4 , 3 , 8 ,
6 , 5 , 11 ,
5 , 6 , 10 ,
9 , 10 , 2 ,
10 , 9 , 3 ,
7 , 8 , 9 ,
8 , 7 , 0 ,
11 , 0 , 1 ,
0 , 11 , 4 ,
6 , 2 , 10 ,
1 , 6 , 11 ,
3 , 5 , 10 ,
5 , 4 , 11 ,
2 , 7 , 9 ,
7 , 1 , 0 ,
3 , 9 , 8 ,
4 , 8 , 0 ,
}
;

glLoadIdentity ( );
glClearColor ( 0.7 , 0.7 , 0.7 , 1.0 );
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnableClientState ( GL_VERTEX_ARRAY);
glEnableClientState ( GL_COLOR_ARRAY);
glVertexPointer ( 3 , GL_FLOAT, 0 , vertices);
glColorPointer ( 4 , GL_FLOAT, 0 , colors);
for ( int i = 1 ; i <= 30 ; i++)
{
glLoadIdentity ( );
glTranslatef ( 0.0f ,-1.5 ,-3.0f * (GLfloat)i);
glRotatef ( rot, 1.0 , 1.0 , 1.0 );
glDrawElements ( GL_TRIANGLES, 60 , GL_UNSIGNED_BYTE, icosahedronFaces);
}

glDisableClientState ( GL_VERTEX_ARRAY);
glDisableClientState ( GL_COLOR_ARRAY);
static NSTimeInterval lastDrawTime;
if ( lastDrawTime)
{
NSTimeInterval timeSinceLastDraw = [ NSDate timeIntervalSinceReferenceDate ] - lastDrawTime;
rot+=50 * timeSinceLastDraw;
}

lastDrawTime = [ NSDate timeIntervalSinceReferenceDate ] ;
}

如果你把上述代码加入OpenGL Xcode项目模板 项目中(它使用glFrustumf()设置了一个具有 45°视野的透视视口),你将看到下面图形:

很好。随着几何体远离你,它们会变得越来越小,正像火车铁轨一样。

如果你只是将 glFrustumf()改为 glOrthof(),看上去就完全不同了:

没有透视,第一个二十面体后面的二十九个二十面体完全被第一个挡住了。因为没有透视,后面的各几何体的形状完全取决于其前方的物体。

好了,这是一个很沉闷的主题,事实上你现在可以完全忘却三角课学的知识了。只要复制基于视野角度计算锥台的两行代码就好,而且你可能再也不需要记住它的原理了。

继续下一次激动人心的冒险旅程…

下一篇文章,我们将为二十面体增加光效,使它看上去更真实。

你可能感兴趣的:(xcode,iPhone,buffer,数学计算,colors,orthogonal)