leetcode笔记:Best Time to Buy and Sell Stock IV

一. 题目描述

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

二. 题目分析

这一题的难度要远高于前面几题,需要用到动态规划,代码参考了博客:http://www.cnblogs.com/grandyang/p/4295761.html

这里需要两个递推公式来分别更新两个变量localglobal,然后求至少k次交易的最大利润。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

三. 示例代码

#include <vector>
#include <iostream>
#include <cstdio>
#include <climits>
#include <cmath>
using namespace std;

class Solution {
public:
    int maxProfit(int k, vector<int> &prices) {
        if(prices.empty() || k == 0)
          return 0;

        if(k >= prices.size())
          return solveMaxProfit(prices);

        vector<int> global(k + 1, 0);
        vector<int> local(k + 1, 0);

        for(int i = 1; i < prices.size(); i++) {
            int diff = prices[i] - prices[i - 1];
            for(int j = k; j >= 1; j--) {
                local[j] = max(local[j] + diff, global[j - 1] + max(diff, 0));
                global[j] = max(global[j], local[j]);
            }
        }

        return global[k];
    }

private:
    int solveMaxProfit(vector<int> &prices) {
        int res = 0;
        for(int i = 1; i < prices.size(); i++) {
            int diff = prices[i] - prices[i - 1];
            if(diff > 0)
              res += diff;
        }
        return res;
    }
};

四. 小结

参考链接:http://www.cnblogs.com/grandyang/p/4295761.html

你可能感兴趣的:(LeetCode,C++,算法,dp,动态规划)