常见排序算法的实现(三)——堆排序

常见排序算法的实现(一)——插入排序

常见排序算法的实现(二)——shell排序

常见排序算法的实现(三)——堆排序

常见排序算法的实现(四)——冒泡排序

常见排序算法的实现(五)——快速排序

常见排序算法的实现(六)——归并排序
堆的定义:     
         n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
     (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤)

     若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

         堆的这个性质使得可以迅速定位在一个序列之中的最小(大)的元素.

         堆排序算法的过程如下:1)得到当前序列的最小(大)的元素 2)把这个元素和最后一个元素进行交换,这样当前的最小(大)的元素就放在了序列的最后,而原先的最后一个元素放到了序列的最前面 3)的交换可能会破坏堆序列的性质(注意此时的序列是除去已经放在最后面的元素),因此需要对序列进行调整,使之满足于上面堆的性质.重复上面的过程,直到序列调整完毕为止
// array是待调整的堆数组,i是待调整的数组元素的位置,length是数组的长度
void HeapAdjust(int array[], int i, int nLength)
{
    int nChild, nTemp;

    for (nTemp = array[i]; 2 * i + 1 < nLength; i = nChild)
    {
        // 子结点的位置是 父结点位置 * 2  和父节点位置*2+1   //  修改处
        nChild = 2 * i + 1;

        // 得到子结点中较大的结点
        if (nChild != nLength - 1 && array[nChild + 1] > array[nChild])
            ++nChild;

        // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
        if (nTemp < array[nChild])
        {
            array[i] = array[nChild];
        }
        else    // 否则退出本次循环
        {
            break;
        }
    }

    // 最后把需要调整的元素值放到合适的位置
    array[i] = nTemp;
}

// 堆排序算法
void HeapSort(int array[], int length)
{
    // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    for (int i = length / 2 - 1; i >= 0; --i)
    {
        HeapAdjust(array, i, length);
    }

    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for (int i = length - 1; i > 0; --i)
    {
        // 把第一个元素和当前的最后一个元素交换,
        // 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
        Swap(&array[0], &array[i]);

        // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
        HeapAdjust(array, 0, i);
    }
}


int main(int argc, char *argv[])
{
    int a[] = {71, 18 ,151 ,138, 160, 63, 174, 169 ,79, 78};
     
    HeapSort(a,10);
    for(int i =0;i<10;i++)
    cout<<a[i]<<"   ";
    cout<<endl; 
    system("PAUSE");
    return EXIT_SUCCESS;
}


一个测试及输出的结果,在每次HeapAdjust之后显示出来当前数组的情况
before Heap sort:
71 18 151 138 160 63 174 169 79 78
// 开始调整前半段数组元素
71 18 151 138 160 63 174 169 79 78
71 18 151 169 160 63 174 138 79 78
71 18 174 169 160 63 151 138 79 78
71 169 174 138 160 63 151 18 79 78
174 169 151 138 160 63 71 18 79 78
// 开始进行全局的调整
169 160 151 138 78 63 71 18 79 174
160 138 151 79 78 63 71 18 169 174
151 138 71 79 78 63 18 160 169 174
138 79 71 18 78 63 151 160 169 174
79 78 71 18 63 138 151 160 169 174
78 63 71 18 79 138 151 160 169 174
71 63 18 78 79 138 151 160 169 174
63 18 71 78 79 138 151 160 169 174

18 63 71 78 79 138 151 160 169 174


堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
堆排序
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,
由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,
由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n- 2].keys≤R[n-1..n].keys,
同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。

(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始化为大根堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。
堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,
且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止

堆排序算法时间复杂度分析:

1)堆排序算法的时间复杂度为O(nlgn);

2)考虑到不同高度结点运行堆调整函数的时间不相同,并且大部分结点的高度都相对较小,初始建堆可以在线性时间里完成,即初始建堆得时间复杂度为O(n);

3)高度为h的结点运行堆调整函数的时间复杂度为O(lgh);



你可能感兴趣的:(算法,shell,测试,存储)