I/O模型:阻塞、非阻塞 & 同步、异步

转自: http://jzhihui.iteye.com/

这篇文章主要总结下这几个概念,前几天看到微博里在讨论,当时也有点搞不清楚,昨天在看到Reactor和Proactor模式的时候,又提到相关概念,索性搞搞清楚,写个总结。

《Unix网络编程卷1:套接字联网API》(下面称为卷1)第6章对Unix I/O模型有5种划分:阻塞式I/O模型,非阻塞式I/O模型,I/O复用模型,信号驱动式I/O,异步I/O模型。这里我们只关心跟我们主题相关的四类:

阻塞式I/O模型:应用进程调用I/O操作时阻塞,只有等待要操作的数据准备好,并复制到应用进程的缓冲区中才返回。

非阻塞式I/O模型:当应用进程要调用的I/O操作会导致该进程进入阻塞状态时,该I/O调用返回一个错误,一般情况下,应用进程需要利用轮询的方式来检测某个操作是否就绪。数据就绪后,实际的I/O操作会等待数据复制到应用进程的缓冲区中以后才返回。

I/O复用模型:阻塞发生在select/poll的系统调用上,而不是阻塞在实际的I/O系统调用上。select/poll发现有数据就绪后,通过实际的I/O操作将数据复制到应用进程的缓冲区中。

异步I/O模型:应用进程通知内核开始一个异步I/O操作,并让内核在整个操作(包含将数据从内核复制到应该进程的缓冲区)完成后通知应用进程。

对于上面的分类,卷1给出了一个很形象的图,如下:

从上面图中可以看出,卷1中把I/O操作分为两个阶段,第一阶段等待数据可用,第二阶段将数据从内核复制到用户空间。前三种模型的区别在于第一阶段(阻塞式I/O阻塞在I/O操作上,非阻塞式I/O轮询,I/O复用阻塞在select/poll或者epoll上),第二阶段都是一样的,即这里的阻塞不阻塞体现在第一阶段,从这方面来说I/O复用类型也可以归类到阻塞式I/O,它与阻塞式I/O的区别在于阻塞的系统调用不同。而异步I/O的两个阶段都不会阻塞进程。

我们再来看看同步I/O与异步I/O(AIO),根据卷1的说明,同步I/O与异步I/O是由POSIX定义的两个术语:

同步I/O操作:实际的I/O操作将导致请求进程阻塞,直到I/O操作完成。

异步I/O操作:实际的I/O操作不导致请求进程阻塞。

由此定义来看,前面分类中的前三种:阻塞式I/O,非阻塞式I/O,I/O复用都属于同步I/O,因为第二阶段的数据复制都是阻塞的。而只有前面定义的异步I/O模型与这里的异步I/O操作吻合。

由异步I/O的定义来看,操作系统必须提供一种方式,在应用进程发出I/O操作后,可以在后台(而不是当前应用进程)完成数据等待和数据复制的工作,并最终通知应用进程I/O操作已经完成。

在Linux下有两种称为AIO的的接口。一个是由glibc提供,是由多线程来模拟:数据等待和数据复制的工作,由glibc创建线程来完成。数据复制完成后,执行I/O操作的线程通过回调函数的方式通知应用线程(严格来讲,这种方式不能算真正的AIO,因为用来执行实际I/O操作的线程还是阻塞在I/O操作上,只不过从应用进程的角度来看是异步方式的)。另一种是由内核提供的Kernel AIO,可以做到真正的内核异步通知(这种方式对读写方式,写入大小及偏移都有严格的要求),并且不支持网络I/O[1][2],其实现原理本质上与下面要介绍的IOCP类似。

还有一种称为IOCP(Input/Output Completion Port)的AIO。从实现原理上讲,IOCP做完I/O操作后,将结果封装成完成包(completion packet)入队到完成端口的队列(FIFO)中去,应用线程从队列中读取到完成消息后,处理后续逻辑。从这方面来讲,IOCP类似生产者-消费者模型:生产者为内核,收到应用线程的I/O请求后,等待数据可用,并将结果数据复制到应用线程指定的缓冲区中后,然后入队一个完成消息;消费者为应用线程,一开始向内核提交I/O请求,并在队列上等待内核的完成消息(只不过,IOCP对同时可运行的消费者有限制),收到完成消息后,进行后续处理[3]。

从上面对Linux kernel AIO以及IOCP的介绍可以看出,这两种异步I/O操作的完成通知是通过入队消息到消息队列的方式来完成的,应用进程必须阻塞在消息队列上来等待完成消息(别被这里的阻塞混淆,AIO定义中的阻塞是指实际的I/O操作)。

Reactor与Proactor模式就分别对应同步I/O和异步I/O[4]:Reactor是在事件就绪时通知应用进程,应用进程需要完成实际的I/O操作;而Proactor是在I/O操作已经完成的时候(数据就绪,并且已经拷贝到应用进程的缓冲区中,实际的I/O操作由操作系统来完成)通知应用进程。

AIO在服务器设计方面很少被用到[5],更多的使用在本地I/O方面[6]。

总结:

其实要搞清楚这些概念,主要是搞清楚这些概念描述的主体是什么:

阻塞或者非阻塞I/O主要是指I/O操作第一阶段的完成方式,即数据还未准备好的时候,应用进程的表现,如果这里进程挂起,则为阻塞I/O,否则为非阻塞I/O。

同步或者异步I/O主要是指实际I/O操作的完成方式,同步意味着由应用进程发起并完成I/O操作,I/O操作未完成前,会导致应用进程挂起;异步意味着应用进程只发出I/O请求,并接收完成通知,实际I/O操作由系统完成,I/O操作进行时,应用进程可以继续工作。

参考资料:

1. http://cnodejs.org/topic/4f16442ccae1f4aa270010a7/

2. http://lse.sourceforge.net/io/aio.html

3. http://60.251.1.52/taiwan/technet/sysinternals/information/iocompletionports.mspx

4. http://www.artima.com/articles/io_design_patterns2.html

5. http://www.kegel.com/c10k.html#aio

6. http://blog.yufeng.info/archives/741

 

 

 

 

110人阅读评论(0)收藏举报

转载:http://blog.csdn.net/historyasamirror/article/details/5778378


当你发现自己最受欢迎的一篇blog其实大错特错时,这绝对不是一件让人愉悦的事。
《 IO - 同步,异步,阻塞,非阻塞 》是我在开始学习epoll和libevent的时候写的,主要的思路来自于文中的那篇link 。写完之后发现很多人都很喜欢,我还是非常开心的,也说明这个问题确实困扰了很多人。随着学习的深入,渐渐的感觉原来的理解有些偏差,但是还是没引起自己的重视,觉着都是一些小错误,无伤大雅。直到有位博友问了一个问题,我重新查阅了一些更权威的资料,才发现原来的文章中有很大的理论错误。我不知道有多少人已经看过这篇blog并受到了我的误导,鄙人在此表示抱歉。俺以后写技术blog会更加严谨的。
一度想把原文删了,最后还是没舍得。毕竟每篇blog都花费了不少心血,另外放在那里也可以引以为戒。所以这里新补一篇。算是亡羊补牢吧。

言归正传。
同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,我先限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。
本文最重要的参考文献是Richard Stevens的“UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking ”,6.2节“I/O Models ”,Stevens在这节中详细说明了各种IO的特点和区别,如果英文够好的话,推荐直接阅读。Stevens的文风是有名的深入浅出,所以不用担心看不懂。本文中的流程图也是截取自参考文献。

Stevens在文章中一共比较了五种IO Model:
    blocking IO
    nonblocking IO
    IO multiplexing
    signal driven IO
    asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
1 等待数据准备 (Waiting for the data to be ready)
2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

blocking IO
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

I/O模型:阻塞、非阻塞 & 同步、异步_第1张图片

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

I/O模型:阻塞、非阻塞 & 同步、异步_第2张图片

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

IO multiplexing

IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

I/O模型:阻塞、非阻塞 & 同步、异步_第3张图片

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

Asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

I/O模型:阻塞、非阻塞 & 同步、异步_第4张图片

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
    An asynchronous I/O operation does not cause the requesting process to be blocked;

两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

I/O模型:阻塞、非阻塞 & 同步、异步_第5张图片

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

最后,再举几个不是很恰当的例子来说明这四个IO Model:
有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(I/O模型:阻塞、非阻塞 & 同步、异步)