Hadoop MapReduce中如何处理跨行Block和UnputSplit

Hadoop的初学者经常会疑惑这样两个问题:1.Hadoop的一个Block默认是64M,那么对于一个记录行形式的文本,会不会造成一行记录被分到两个Block当中?2.在把文件从Block中读取出来进行切分时,会不会造成一行记录被分成两个InputSplit,如果被分成两个InputSplit,这样一个InputSplit里面就有一行不完整的数据,那么处理这个InputSplit的Mapper会不会得出不正确的结果?

对于上面的两个问题,首先要明确两个概念:Block和InputSplit

      1. block是hdfs存储文件的单位(默认是64M);
      2. InputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件实际的切割,只是记录了要处理的数据的位置(包括文件的path和hosts)和长度(由start和length决定)。

因此,以行记录形式的文本,还真可能存在一行记录被划分到不同的Block,甚至不同的DataNode上去。通过分析FileInputFormat里面的getSplits方法,可以得出,某一行记录同样也可能被划分到不同的InputSplit。

    public List<InputSplit> getSplits(JobContext job) throws IOException {  
      long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));  
      long maxSize = getMaxSplitSize(job);  
      
      // generate splits  
      List<InputSplit> splits = new ArrayList<InputSplit>();  
      List<FileStatus> files = listStatus(job);        
      for (FileStatus file: files) {  
        Path path = file.getPath();  
        long length = file.getLen();  
        if (length != 0) {  
          FileSystem fs = path.getFileSystem(job.getConfiguration());  
          BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);  
          if (isSplitable(job, path)) {  
            long blockSize = file.getBlockSize();  
            long splitSize = computeSplitSize(blockSize, minSize, maxSize);  
      
            long bytesRemaining = length;  
            while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {  
              int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);  
              splits.add(makeSplit(path, length-bytesRemaining, splitSize,  
                                       blkLocations[blkIndex].getHosts()));  
              bytesRemaining -= splitSize;  
            }  
      
            if (bytesRemaining != 0) {  
              splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,  
                         blkLocations[blkLocations.length-1].getHosts()));  
            }  
          } else { // not splitable  
            splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));  
          }  
        } else {   
          //Create empty hosts array for zero length files  
          splits.add(makeSplit(path, 0, length, new String[0]));  
        }  
      }  
      // Save the number of input files for metrics/loadgen  
      job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());  
      LOG.debug("Total # of splits: " + splits.size());  
      return splits;  
    }  

  从上面的代码可以看出,对文件进行切分其实很简单:获取文件在HDFS上的路径和Block信息,然后根据splitSize

对文件进行切分,splitSize = computeSplitSize(blockSize, minSize, maxSize);blockSize,minSize,maxSize都可以配置,默认splitSize 就等于blockSize的默认值(64m)。

FileInputFormat对文件的切分是严格按照偏移量来的,因此一行记录比较长的话,其可能被切分到不同的InputSplit。但这并不会对Map造成影响,尽管一行记录可能被拆分到不同的InputSplit,但是与FileInputFormat关联的RecordReader被设计的足够健壮,当一行记录跨InputSplit时,其能够到读取不同的InputSplit,直到把这一行记录读取完成,在Hadoop里,记录行形式的文本,通常采用默认的TextInputFormat,TextInputFormat关联的是LineRecordReader,下面我们来看看LineRecordReader的的nextKeyValue方法里读取文件的代码:

    while (getFilePosition() <= end) {  
      newSize = in.readLine(value, maxLineLength,  
          Math.max(maxBytesToConsume(pos), maxLineLength));  
      if (newSize == 0) {  
        break;  
      }  

 其读取文件是通过LineReader(in就是一个LineReader实例)的readLine方法完成的:

    public int readLine(Text str, int maxLineLength,  
                        int maxBytesToConsume) throws IOException {  
      if (this.recordDelimiterBytes != null) {  
        return readCustomLine(str, maxLineLength, maxBytesToConsume);  
      } else {  
        return readDefaultLine(str, maxLineLength, maxBytesToConsume);  
      }  
    }  
      
    /** 
     * Read a line terminated by one of CR, LF, or CRLF. 
     */  
    private int readDefaultLine(Text str, int maxLineLength, int maxBytesToConsume)  
    throws IOException {  
      str.clear();  
      int txtLength = 0; //tracks str.getLength(), as an optimization  
      int newlineLength = 0; //length of terminating newline  
      boolean prevCharCR = false; //true of prev char was CR  
      long bytesConsumed = 0;  
      do {  
        int startPosn = bufferPosn; //starting from where we left off the last time  
        if (bufferPosn >= bufferLength) {  
          startPosn = bufferPosn = 0;  
          if (prevCharCR)  
            ++bytesConsumed; //account for CR from previous read  
          bufferLength = in.read(buffer);  
          if (bufferLength <= 0)  
            break; // EOF  
        }  
        for (; bufferPosn < bufferLength; ++bufferPosn) { //search for newline  
          if (buffer[bufferPosn] == LF) {  
            newlineLength = (prevCharCR) ? 2 : 1;  
            ++bufferPosn; // at next invocation proceed from following byte  
            break;  
          }  
          if (prevCharCR) { //CR + notLF, we are at notLF  
            newlineLength = 1;  
            break;  
          }  
          prevCharCR = (buffer[bufferPosn] == CR);  
        }  
        int readLength = bufferPosn - startPosn;  
        if (prevCharCR && newlineLength == 0)  
          --readLength; //CR at the end of the buffer  
        bytesConsumed += readLength;  
        int appendLength = readLength - newlineLength;  
        if (appendLength > maxLineLength - txtLength) {  
          appendLength = maxLineLength - txtLength;  
        }  
        if (appendLength > 0) {  
          str.append(buffer, startPosn, appendLength);  
          txtLength += appendLength;  
        }  
      } while (newlineLength == 0 && bytesConsumed < maxBytesToConsume);   <span style="color: #ff0000;">//①</span>  
      
      if (bytesConsumed > (long)Integer.MAX_VALUE)  
        throw new IOException("Too many bytes before newline: " + bytesConsumed);      
      return (int)bytesConsumed;  
    }  

  我们分析下readDefaultLine方法,do-while循环体主要是读取文件,然后遍历读取的内容,找到默认的换行符就终止循环。前面说,对于跨InputSplit的行,LineRecordReader会自动跨InputSplit去读取。这就体现在上述代码的While循环的终止条件上:

while (newlineLength == 0 && bytesConsumed < maxBytesToConsume);

newlineLength==0则以为一次do-while循环中读取的内容中没有遇到换行符,因maxBytesToConsume的默认值为Integer.MAX_VALUE,所以如果读取的内容没有遇到换行符,则会一直读取下去,知道读取的内容超过maxBytesToConsume。这样的出来方式,解决了一行记录跨InputSplit的读取问题,同样也会造成下面两个疑问:

1.既然在LineReader读取方法里面没有对考虑InputSplit的end进行处理,难道读取一个InputSplit的时候,会这样无限的读取下去么?

2.如果一行记录L跨越了A,B两个InputSplit,读A的时候已经读取了跨越A,B的这条记录L,那么对B这个InputSplit读取的时候,如果做到不读取L这条记录在B中的部分呢?

为了解决这两个问题,Hadoop通过下面的代码来做到:LineRecordReader的nextKeyValue方法。

    public boolean nextKeyValue() throws IOException {  
      if (key == null) {  
        key = new LongWritable();  
      }  
      key.set(pos);  
      if (value == null) {  
        value = new Text();  
      }  
      int newSize = 0;  
      // We always read one extra line, which lies outside the upper  
      // split limit i.e. (end - 1)  
      while (getFilePosition() <= end) {        <span style="color: #ff0000;"> //②</span>  
        newSize = in.readLine(value, maxLineLength,  
            Math.max(maxBytesToConsume(pos), maxLineLength));  
        if (newSize == 0) {  
          break;  
        }  
        pos += newSize;  
        inputByteCounter.increment(newSize);  
        if (newSize < maxLineLength) {  
          break;  
        }  
      
        // line too long. try again  
        LOG.info("Skipped line of size " + newSize + " at pos " +   
                 (pos - newSize));  
      }  
      if (newSize == 0) {  
        key = null;  
        value = null;  
        return false;  
      } else {  
        return true;  
      }  
    }  

    通过代码②处得While条件,就保证了InputSplit读取边界的问题,如果存在跨InputSplit的记录,也只好跨InputSplit读取一次。

     再来看LineRecordReader的initialize方法:

    // If this is not the first split, we always throw away first record  
    // because we always (except the last split) read one extra line in  
    // next() method.  
    if (start != 0) {  
      start += in.readLine(new Text(), 0, maxBytesToConsume(start));  
    }  
    this.pos = start;  

    如果不是第一InputSplit,则在读取的时候,LineRecordReader会自动忽略掉第一个换行符之前的所有内容,这样就不存在重读读取的问题。


你可能感兴趣的:(mapreduce,hadoop,buffer,Path,optimization,newline)