HDU 1255 覆盖的面积 线段树

题意:给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
题解:和 poj1151 类似,不过要求的是面积的交,同样是先离散化然后枚举x坐标。此题更新时求y方向的“合法长度”相对于 poj1151 还有些区别, 值得比较比较。并且用lazy貌似也不合适,必须跟新至单元,因为每个节点既受父节点影响,也受子节点影响。

len[1]是覆盖一次的长度,len[2]是覆盖次数>= 2的长度。

当node[u].cover>1时,node[u].len[1] = 0

                                        node[u].len[2] = node[u].rf - node[u].lf

当node[u].cover=1时,node[u].len[2] = 两子树的len[1] 之和 + len[2] 之和
                                        node[u].len[1] = node[u].rf - node[u].lf - len[2]

当node[u].cover=0时,   node[u].len[1] = 两棵子树的 len[1] 之和

                                        node[u].len[2] = 两棵子树的 len[2] 之和

#include <algorithm>  
#include <iostream>  
using namespace std;  
  
#define L(x) ( x << 1 )  
#define R(x) ( x << 1 | 1 )  
#define N 2010
  
double y[N];  
   
struct Line  
{  
    double x, y1, y2;  
    int flag;  
} line[N];  
  
struct Node  
{  
    int l, r, cover;  
    double lf, rf, len[3];  
} node[N*3];  
  
bool cmp ( Line a, Line b )  
{  
    return a.x < b.x;  
}  
  
void length ( int u )  
{  
    if ( node[u].cover > 1 )  
    {  
        node[u].len[2] = node[u].rf - node[u].lf;
		node[u].len[1] = 0;
        return;  
    }  

    if ( node[u].l + 1 == node[u].r )   /* 处理叶子节点 */
	{
        node[u].len[2] = 0;
		if ( node[u].cover == 1 )
			node[u].len[1] = node[u].rf - node[u].lf - node[u].len[2];
		else
			node[u].len[1] = 0;
		return;
	}
    
	if ( node[u].cover == 1 )
	{
        node[u].len[2] = node[L(u)].len[1] + node[R(u)].len[1] + node[L(u)].len[2] + node[R(u)].len[2];
		node[u].len[1] = node[u].rf - node[u].lf - node[u].len[2];
	}
	else if ( node[u].cover == 0 )
	{
		node[u].len[2] = node[L(u)].len[2] + node[R(u)].len[2];
		node[u].len[1] = node[L(u)].len[1] + node[R(u)].len[1];
	}
}
		

void build ( int u, int l, int r )  
{  
    node[u].l = l;
	node[u].r = r;  
    node[u].lf = y[l]; 
	node[u].rf = y[r];  
    node[u].cover = 0;
	node[u].len[1] = node[u].len[2] = 0; 
    if ( l + 1 == r ) return;  
    int mid = ( l + r ) / 2;  
    build ( L(u), l, mid );  
    build ( R(u), mid, r );  
}  
  
void update ( int u, Line e )  
{  
    if ( e.y1 == node[u].lf && e.y2 == node[u].rf )  
    {  
		node[u].cover += e.flag;
        length ( u );  
        return;  
    }  
    if ( e.y1 >= node[R(u)].lf )  
        update ( R(u), e );  
    else if ( e.y2 <= node[L(u)].rf )  
        update ( L(u), e );  
    else  
    {  
        Line temp = e;  
        temp.y2 = node[L(u)].rf;  
        update ( L(u), temp );  
        temp = e;  
        temp.y1 = node[R(u)].lf;  
        update ( R(u), temp );  
    }  
    length ( u );  
}  
  
int main()  
{  
    freopen("a.txt","r",stdin);  
    int n, test, t, i;  
    double  x1, y1, x2, y2, ans;
	scanf("%d",&test);
    while ( test-- )  
    {  
		scanf("%d",&n);
        for ( i = t = 1; i <= n; i++, t++ )  
        {  
            scanf("%lf%lf%lf%lf",&x1, &y1, &x2, &y2 );  
            line[t].x = x1;  
            line[t].y1 = y1;  
            line[t].y2 = y2;  
            line[t].flag = 1;  
            y[t] = y1;  
            t++;  
            line[t].x = x2;  
            line[t].y1 = y1;  
            line[t].y2 = y2;  
            line[t].flag = -1;  
            y[t] = y2;  
        }  
  
        sort ( line + 1, line + t, cmp );  
        sort ( y + 1, y + t );  
        build ( 1, 1, t-1 );  
        update ( 1, line[1] );  

        ans = 0;  
        for ( i = 2; i < t; i++ )  
        {  
            ans += node[1].len[2] * ( line[i].x - line[i-1].x );  
            update ( 1, line[i] );  
        }  
        printf ( "%.2lf\n", ans );  
    }  
    return 0;  
} 		



你可能感兴趣的:(Algorithm,struct,Build,iostream,2010)