题意:给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
题解:和 poj1151 类似,不过要求的是面积的交,同样是先离散化然后枚举x坐标。此题更新时求y方向的“合法长度”相对于 poj1151 还有些区别, 值得比较比较。并且用lazy貌似也不合适,必须跟新至单元,因为每个节点既受父节点影响,也受子节点影响。
len[1]是覆盖一次的长度,len[2]是覆盖次数>= 2的长度。
当node[u].cover>1时,node[u].len[1] = 0
node[u].len[2] = 两棵子树的 len[2] 之和
#include <algorithm> #include <iostream> using namespace std; #define L(x) ( x << 1 ) #define R(x) ( x << 1 | 1 ) #define N 2010 double y[N]; struct Line { double x, y1, y2; int flag; } line[N]; struct Node { int l, r, cover; double lf, rf, len[3]; } node[N*3]; bool cmp ( Line a, Line b ) { return a.x < b.x; } void length ( int u ) { if ( node[u].cover > 1 ) { node[u].len[2] = node[u].rf - node[u].lf; node[u].len[1] = 0; return; } if ( node[u].l + 1 == node[u].r ) /* 处理叶子节点 */ { node[u].len[2] = 0; if ( node[u].cover == 1 ) node[u].len[1] = node[u].rf - node[u].lf - node[u].len[2]; else node[u].len[1] = 0; return; } if ( node[u].cover == 1 ) { node[u].len[2] = node[L(u)].len[1] + node[R(u)].len[1] + node[L(u)].len[2] + node[R(u)].len[2]; node[u].len[1] = node[u].rf - node[u].lf - node[u].len[2]; } else if ( node[u].cover == 0 ) { node[u].len[2] = node[L(u)].len[2] + node[R(u)].len[2]; node[u].len[1] = node[L(u)].len[1] + node[R(u)].len[1]; } } void build ( int u, int l, int r ) { node[u].l = l; node[u].r = r; node[u].lf = y[l]; node[u].rf = y[r]; node[u].cover = 0; node[u].len[1] = node[u].len[2] = 0; if ( l + 1 == r ) return; int mid = ( l + r ) / 2; build ( L(u), l, mid ); build ( R(u), mid, r ); } void update ( int u, Line e ) { if ( e.y1 == node[u].lf && e.y2 == node[u].rf ) { node[u].cover += e.flag; length ( u ); return; } if ( e.y1 >= node[R(u)].lf ) update ( R(u), e ); else if ( e.y2 <= node[L(u)].rf ) update ( L(u), e ); else { Line temp = e; temp.y2 = node[L(u)].rf; update ( L(u), temp ); temp = e; temp.y1 = node[R(u)].lf; update ( R(u), temp ); } length ( u ); } int main() { freopen("a.txt","r",stdin); int n, test, t, i; double x1, y1, x2, y2, ans; scanf("%d",&test); while ( test-- ) { scanf("%d",&n); for ( i = t = 1; i <= n; i++, t++ ) { scanf("%lf%lf%lf%lf",&x1, &y1, &x2, &y2 ); line[t].x = x1; line[t].y1 = y1; line[t].y2 = y2; line[t].flag = 1; y[t] = y1; t++; line[t].x = x2; line[t].y1 = y1; line[t].y2 = y2; line[t].flag = -1; y[t] = y2; } sort ( line + 1, line + t, cmp ); sort ( y + 1, y + t ); build ( 1, 1, t-1 ); update ( 1, line[1] ); ans = 0; for ( i = 2; i < t; i++ ) { ans += node[1].len[2] * ( line[i].x - line[i-1].x ); update ( 1, line[i] ); } printf ( "%.2lf\n", ans ); } return 0; }