整数划分问题(放苹果)
http://www.cppblog.com/superKiki/archive/2010/05/27/116506.html
http://www.cnblogs.com/hoodlum1980/archive/2008/10/11/1308493.html
一、问题描述
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,其中n1≥n2≥…≥nk≥1,k≥1。
正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。
例如正整数6有如下11种不同的划分,
6;
5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1.
二、问题分析
根据n和m的关系,考虑以下几种情况:
(1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};
(2) 当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,...,1};
(3) 当n=m时,根据划分中是否包含n,可以分为两种情况:
(a). 划分中包含n的情况,只有一个即{n};
(b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。
因此 f(n,n) =1 + f(n,n-1);
(4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);
(5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
(a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,可能再次出现m,因此是(n-m)的m划分,因此这种划分
个数为f(n-m, m);
(b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);
因此 f(n, m) = f(n-m, m)+f(n,m-1);
综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:
f(n, m)= 1; (n=1 or m=1)
f(n, n); (n<m)
1+ f(n, m-1); (n=m)
f(n-m,m)+f(n,m-1); (n>m)