小波变换网文精粹:小波变换和motion信号处理(七)

小波变换网文精粹:小波变换和motion信号处理(七)

转自:http://www.kunli.info/2011/02/18/fourier-wavelet-motion-signal-2/

七、简要回顾

        在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。

        还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样:

                    

        其中的 就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。

        我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的?

        下面,我们就来讨论一下这些特性背后的原理。

        首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交:

               小波变换网文精粹:小波变换和motion信号处理(七)_第1张图片 

        另外,为了方便处理,父小波和母小波也需要是正交的。可以说,完整的小波展开就是由母小波和父小波共同定义的。

            

其中 是母小波,是父小波。需要提醒一点的是,这个正交纯粹是为了小波分析的方便而引入的特性,并不是说小波变换的基就一定必须是正交的。但大部分小波变换的基确实是正交的,所以本文就直接默认正交为小波变换的主要性质之一了。引入这个父小波呢,主要是为了方便做多解析度分析(multiresolution analysis, MRA)。说到这里,你的问题可能会井喷了:好好的为什么出来一个父小波呢?这个scaling function是拿来干嘛的?它背后的物理意义是什么?wavelet function背后的物理意义又是什么?这个多解析度分析又是什么呢?不急,下面,我们围绕一个例子来巩固一下前面的知识,同时再引出新的特性。

你可能感兴趣的:(function)