HAL层开发基础 && Android HAL module执行过程分析

转自:http://blog.csdn.net/jiajie961/archive/2010/11/22/6026585.aspx

 

Android HAL层,即硬件抽象层,是Google响应厂家“希望不公开源码”的要求推出的新概念
1,源代码和目标位置
源代码: /hardware/libhardware目录,该目录的目录结构如下:
/hardware/libhardware/hardware.c编译成libhardware.so,目标位置为/system/lib目录
/hardware/libhardware/include/hardware目录下包含如下头文件:
hardware.h 通用硬件模块头文件
copybit.h copybit模块头文件
gralloc.h gralloc模块头文件
lights.h  背光模块头文件
overlay.h overlay模块头文件
qemud.h  qemud模块头文件
sensors.h 传感器模块头文件
/hardware/libhardware/modules目录下定义了很多硬件模块
这些硬件模块都编译成xxx.xxx.so,目标位置为/system/lib/hw目录

2,HAL层的实现方式
JNI->通用硬件模块->硬件模块->内核驱动接口
具体一点:JNI->libhardware.so->xxx.xxx.so->kernel
具体来说:android frameworks中JNI调用/hardware/libhardware/hardware.c中定义的hw_get_module函数来获取硬件模块,
然后调用硬件模块中的方法,硬件模块中的方法直接调用内核接口完成相关功能

3,通用硬件模块(libhardware.so)
(1)头文件为:/hardware/libhardware/include/hardware/hardware.h
头文件中主要定义了通用硬件模块结构体hw_module_t,声明了JNI调用的接口函数hw_get_module
hw_module_t定义如下:
typedef struct hw_module_t {
    /** tag must be initialized to HARDWARE_MODULE_TAG */
    uint32_t tag;

    /** major version number for the module */
    uint16_t version_major;

    /** minor version number of the module */
    uint16_t version_minor;

    /** Identifier of module */
    const char *id;

    /** Name of this module */
    const char *name;

    /** Author/owner/implementor of the module */
    const char *author;

    /** Modules methods */
    struct hw_module_methods_t* methods; //硬件模块的方法

    /** module's dso */
    void* dso;

    /** padding to 128 bytes, reserved for future use */
    uint32_t reserved[32-7];

} hw_module_t;
硬件模块方法结构体hw_module_methods_t定义如下:
typedef struct hw_module_methods_t {
    /** Open a specific device */
    int (*open)(const struct hw_module_t* module, const char* id,
            struct hw_device_t** device);

} hw_module_methods_t;
只定义了一个open方法,其中调用的设备结构体参数hw_device_t定义如下:
typedef struct hw_device_t {
    /** tag must be initialized to HARDWARE_DEVICE_TAG */
    uint32_t tag;

    /** version number for hw_device_t */
    uint32_t version;

    /** reference to the module this device belongs to */
    struct hw_module_t* module;

    /** padding reserved for future use */
    uint32_t reserved[12];

    /** Close this device */
    int (*close)(struct hw_device_t* device);

} hw_device_t;
hw_get_module函数声明如下:
int hw_get_module(const char *id, const struct hw_module_t **module);
参数id为模块标识,定义在/hardware/libhardware/include/hardware目录下的硬件模块头文件中,
参数module是硬件模块地址,定义了/hardware/libhardware/include/hardware/hardware.h中

(2)hardware.c中主要是定义了hw_get_module函数如下:
#define HAL_LIBRARY_PATH "/system/lib/hw"
static const char *variant_keys[] = {
    "ro.hardware",
    "ro.product.board",
    "ro.board.platform",
    "ro.arch"
};
static const int HAL_VARIANT_KEYS_COUNT =
    (sizeof(variant_keys)/sizeof(variant_keys[0]));

int hw_get_module(const char *id, const struct hw_module_t **module)
{
    int status;
    int i;
    const struct hw_module_t *hmi = NULL;
    char prop[PATH_MAX];
    char path[PATH_MAX];
    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++)
    {
        if (i < HAL_VARIANT_KEYS_COUNT)
        {
            if (property_get(variant_keys[i], prop, NULL) == 0)
            {
                continue;
            }
            snprintf(path, sizeof(path), "%s/%s.%s.so",
                    HAL_LIBRARY_PATH, id, prop);
        }
        else
        {
            snprintf(path, sizeof(path), "%s/%s.default.so",
                    HAL_LIBRARY_PATH, id);
        }
        if (access(path, R_OK))
        {
            continue;
        }
        /* we found a library matching this id/variant */
        break;
    }

    status = -ENOENT;
    if (i < HAL_VARIANT_KEYS_COUNT+1) {
        /* load the module, if this fails, we're doomed, and we should not try
         * to load a different variant. */
        status = load(id, path, module);
    }

    return status;
}
从源代码我们可以看出,hw_get_module完成的主要工作是根据模块id寻找硬件模块动态连接库地址,然后调用load函数去打开动态连接库
并从动态链接库中获取硬件模块结构体地址。硬件模块路径格式如下:
HAL_LIBRARY_PATH/id.prop.so
HAL_LIBRARY_PATH定义为/system/lib/hw
id是hw_get_module函数的第一个参数所传入,prop部分首先按照variant_keys数组中的名称逐一调用property_get获取对应的系统属性,
然后访问HAL_LIBRARY_PATH/id.prop.so,如果找到能访问的就结束,否则就访问HAL_LIBRARY_PATH/id.default.so
举例如下:
假定访问的是背光模块,id定义为"lights"则系统会按照如下的顺序去访问文件:
/system/lib/hw/lights.[ro.hardware属性值].so
/system/lib/hw/lights.[ro.product.board属性值].so
/system/lib/hw/lights.[ro.board.platform属性值].so
/system/lib/hw/lights.[ro.arch属性值].so
/system/lib/hw/lights.default.so
所以开发硬件模块的时候Makefile文件(Android.mk)中模块的命名LOCAL_MODULE要参考上面的内容,否则就会访问不到没作用了。

load函数的关键部分代码如下:
    handle = dlopen(path, RTLD_NOW);  //打开动态链接库
    if (handle == NULL) {
        char const *err_str = dlerror();
        LOGE("load: module=%s/n%s", path, err_str?err_str:"unknown");
        status = -EINVAL;
        goto done;
    }

    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
    hmi = (struct hw_module_t *)dlsym(handle, sym); //从动态链接库中获取硬件模块结构体的指针
    if (hmi == NULL) {
        LOGE("load: couldn't find symbol %s", sym);
        status = -EINVAL;
        goto done;
    }
HAL_MODULE_INFO_SYM_AS_STR是硬件模块在动态链接库中的标志,定义在hardware.h中如下:
#define HAL_MODULE_INFO_SYM         HMI
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"

4,硬件模块
硬件模块的开发主要是完成/hardware/libhardware/include/hardware目录下对应的头文件中的内容,主要是硬件模块头文件和hardware.h中
的结构体中定义了一些函数指针,调用内核提供的接口将具体的函数实现,然后编译成指定名称的动态链接库放到/system/lib/hw目录下即可。
用一句话来概括:硬件模块的开发就是定义一个hardware.h中定义的hw_module_t结构体,结构体名称为宏HAL_MODULE_INFO_SYM,然后实现结构体
的相关内容即可。

5,内核驱动
主要是要向用户层开放接口,让硬件模块和内核可以交互。

 

转自:http://blogold.chinaunix.net/u/22630/showart_2190386.html

 

HAL module 执行过程分析


1. 其初始化过程如下:

System.loadLibrary("led_runtime")->JNI_OnLoad()->registerMethods()-> ->env->RegisterNatives(clazz,gMethods,sizeof(gMethods)/sizeof(gMethods[0]))

 

onCreate () -> led_srv = new LedService() ->_init()->led_init() -> hw_get_module(LED_HARDWARE_MODULE_ID, (const hw_module_t**)&module) ->

  led_control_open(&module->common,&sLedDevice)-> module->methods->open(module,LED_HARDWARE_MODULE_ID,(struct hw_device_t**)device) -> led_device_open ()

如此就完成了 app 到底层的初始化工作。

2. 接下来看一下 hw_get_module() 函数。

hw_get_module()->property_get(variant_keys[i],prop,NULL)->__system_property_get(key, value) ->__system_property_find(const char *name)-> __system_property_read(pi, 0, value)-> load(id, prop, &hmi)->snprintf(path,sizeof(path), "%s/%s.%s.so", HAL_LIBRARY_PATH, id, variant )-> handle = dlopen (path, RTLD_NOW)-> const char *sym = HAL_MODULE_INFO_SYM_AS_STR ; hmi = (const struct hw_module_t *) dlsym (handle, sym)

3. 最后我们看一下 property_get(variant_keys[i],prop,NULL)

这个其实就是获取 ro.hardware 属性,我们关心的就是这个值是什么。在 system/core/init/init.c 文件中的 main 函数中有这么一句: property_set("ro.hardware", hardware); 无疑 ro.hardware 的值就是 hardware 中的内容了。我们再找一下 hardware 赋的什么值,就 ok 了。其实就是在这个函数中完成的 get_hardware_name()

open("/proc/cpuinfo", O_RDONLY)

hw = strstr(data, "/nHardware")

while (*x && !isspace(*x))

   hardware[n++] = tolower(*x);

   x++;

   if (n == 31) break;

  }

Ok ,我们看到了,它是从 /proc/cpuinfo 中读出来的。我们再打开 cpuinfo 文件看一下: Hardware Goldfish 。好了,我们确定了 property_get ()得到的是 goldfish ,那么 snprintf(path, sizeof(path), "%s/%s.%s.so", HAL_LIBRARY_PATH, id, variant ) 构造出来的 path 就是 /system/lib/hw/led.goldfish.so 。终于找到咱们的 so 文件了。

 

 

 

hmi = (struct hw_module_t *)dlsym(handle, sym);


//dlsym在bionic/linker/dlfcn.c里定义

 

lookup_in_library-> //bionic/linker/linker.c


_elf_lookup->//bionic/linker/linker.c

static Elf32_Sym *_elf_lookup(soinfo *si, unsigned hash, const char *name)
{
    Elf32_Sym *s;
    Elf32_Sym *symtab = si->symtab;
    const char *strtab = si->strtab;
    unsigned n;

    TRACE_TYPE(LOOKUP, "%5d SEARCH %s in %s@0x%08x %08x %d/n", pid,
               name, si->name, si->base, hash, hash % si->nbucket);
    n = hash % si->nbucket;

    for(n = si->bucket[hash % si->nbucket]; n != 0; n = si->chain[n]){
        s = symtab + n;
        if(strcmp(strtab + s->st_name, name)) continue;

            /* only concern ourselves with global and weak symbol definitions */
        switch(ELF32_ST_BIND(s->st_info)){
        case STB_GLOBAL:
        case STB_WEAK:
                /* no section == undefined */
            if(s->st_shndx == 0) continue;

            TRACE_TYPE(LOOKUP, "%5d FOUND %s in %s (%08x) %d/n", pid,
                       name, si->name, s->st_value, s->st_size);
            return s;
        }
    }

    return NULL;
}

 

**********************dlopen

    handle = dlopen(path, RTLD_NOW);

 

//dlopen 在bionic/linker/dlfcn.c里定义

 

->find_library              / /bionic/linker/linker.c

->load_library

->init_library

你可能感兴趣的:(HAL层开发基础 && Android HAL module执行过程分析)