DiffuseCubeDemo.cpp
//============================================================================= // DiffuseCubeDemo.cpp by Frank Luna (C) 2005 All Rights Reserved. // // Demonstrates diffuse lighting and manually specifying the vertex // and vertex normal data. // // Controls: Use mouse to orbit and zoom; use the 'W' and 'S' keys to // alter the height of the camera. //============================================================================= #include "d3dApp.h" #include "DirectInput.h" #include <crtdbg.h> #include "GfxStats.h" #include <list> #include "Vertex.h" class DiffuseCubeDemo : public D3DApp { public: DiffuseCubeDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP); ~DiffuseCubeDemo(); bool checkDeviceCaps(); void onLostDevice(); void onResetDevice(); void updateScene(float dt); void drawScene(); // Helper methods void buildVertexBuffer(); void buildIndexBuffer(); void buildFX(); void buildViewMtx(); void buildProjMtx(); private: GfxStats* mGfxStats; IDirect3DVertexBuffer9* mVB; IDirect3DIndexBuffer9* mIB; ID3DXEffect* mFX; D3DXHANDLE mhTech; D3DXHANDLE mhWVP; D3DXHANDLE mhWorldInverseTranspose; D3DXHANDLE mhLightVecW; D3DXHANDLE mhDiffuseMtrl; D3DXHANDLE mhDiffuseLight; D3DXVECTOR3 mLightVecW; D3DXCOLOR mDiffuseMtrl; D3DXCOLOR mDiffuseLight; float mCameraRotationY; float mCameraRadius; float mCameraHeight; D3DXMATRIX mWorld; D3DXMATRIX mView; D3DXMATRIX mProj; }; int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance, PSTR cmdLine, int showCmd) { // Enable run-time memory check for debug builds. #if defined(DEBUG) | defined(_DEBUG) _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF ); #endif DiffuseCubeDemo app(hInstance, "Diffuse Cube Demo", D3DDEVTYPE_HAL, D3DCREATE_HARDWARE_VERTEXPROCESSING); gd3dApp = &app; DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND, DISCL_NONEXCLUSIVE|DISCL_FOREGROUND); gDInput = &di; return gd3dApp->run(); } DiffuseCubeDemo::DiffuseCubeDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP) : D3DApp(hInstance, winCaption, devType, requestedVP) { if(!checkDeviceCaps()) { MessageBox(0, "checkDeviceCaps() Failed", 0, 0); PostQuitMessage(0); } mGfxStats = new GfxStats(); mCameraRadius = 10.0f; mCameraRotationY = 1.2 * D3DX_PI; mCameraHeight = 5.0f; mLightVecW = D3DXVECTOR3(-0.5, 0.75f, -2.0f); D3DXVec3Normalize(&mLightVecW, &mLightVecW); mDiffuseMtrl = D3DXCOLOR(0.0f, 0.0f, 1.0f, 1.0f); mDiffuseLight = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f); D3DXMatrixIdentity(&mWorld); buildVertexBuffer(); buildIndexBuffer(); buildFX(); onResetDevice(); InitAllVertexDeclarations(); } DiffuseCubeDemo::~DiffuseCubeDemo() { delete mGfxStats; ReleaseCOM(mVB); ReleaseCOM(mIB); ReleaseCOM(mFX); DestroyAllVertexDeclarations(); } bool DiffuseCubeDemo::checkDeviceCaps() { D3DCAPS9 caps; HR(gd3dDevice->GetDeviceCaps(&caps)); // Check for vertex shader version 2.0 support. if( caps.VertexShaderVersion < D3DVS_VERSION(2, 0) ) return false; // Check for pixel shader version 2.0 support. if( caps.PixelShaderVersion < D3DPS_VERSION(2, 0) ) return false; return true; } void DiffuseCubeDemo::onLostDevice() { mGfxStats->onLostDevice(); HR(mFX->OnLostDevice()); } void DiffuseCubeDemo::onResetDevice() { mGfxStats->onResetDevice(); HR(mFX->OnResetDevice()); // The aspect ratio depends on the backbuffer dimensions, which can // possibly change after a reset. So rebuild the projection matrix. buildProjMtx(); } void DiffuseCubeDemo::updateScene(float dt) { mGfxStats->setVertexCount(24); mGfxStats->setTriCount(12); mGfxStats->update(dt); // Get snapshot of input devices. gDInput->poll(); // Check input. if( gDInput->keyDown(DIK_W) ) mCameraHeight += 25.0f * dt; if( gDInput->keyDown(DIK_S) ) mCameraHeight -= 25.0f * dt; // Divide by 50 to make mouse less sensitive. mCameraRotationY += gDInput->mouseDX() / 100.0f; mCameraRadius += gDInput->mouseDY() / 25.0f; // If we rotate over 360 degrees, just roll back to 0 if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI ) mCameraRotationY = 0.0f; // Don't let radius get too small. if( mCameraRadius < 5.0f ) mCameraRadius = 5.0f; // The camera position/orientation relative to world space can // change every frame based on input, so we need to rebuild the // view matrix every frame with the latest changes. buildViewMtx(); } void DiffuseCubeDemo::drawScene() { // Clear the backbuffer and depth buffer. HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xffeeeeee, 1.0f, 0)); HR(gd3dDevice->BeginScene()); // Let Direct3D know the vertex buffer, index buffer and vertex // declaration we are using. HR(gd3dDevice->SetStreamSource(0, mVB, 0, sizeof(VertexPN))); HR(gd3dDevice->SetIndices(mIB)); HR(gd3dDevice->SetVertexDeclaration(VertexPN::Decl)); // Setup the rendering FX HR(mFX->SetTechnique(mhTech)); HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj))); D3DXMATRIX worldInverseTranspose; D3DXMatrixInverse(&worldInverseTranspose, 0, &mWorld); D3DXMatrixTranspose(&worldInverseTranspose, &worldInverseTranspose); HR(mFX->SetMatrix(mhWorldInverseTranspose, &worldInverseTranspose)); HR(mFX->SetValue(mhLightVecW, &mLightVecW, sizeof(D3DXVECTOR3))); HR(mFX->SetValue(mhDiffuseMtrl, &mDiffuseMtrl, sizeof(D3DXCOLOR))); HR(mFX->SetValue(mhDiffuseLight, &mDiffuseLight, sizeof(D3DXCOLOR))); // Begin passes. UINT numPasses = 0; HR(mFX->Begin(&numPasses, 0)); for(UINT i = 0; i < numPasses; ++i) { HR(mFX->BeginPass(i)); HR(gd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 8, 0, 12)); HR(mFX->EndPass()); } HR(mFX->End()); mGfxStats->display(); HR(gd3dDevice->EndScene()); // Present the backbuffer. HR(gd3dDevice->Present(0, 0, 0, 0)); } void DiffuseCubeDemo::buildVertexBuffer() { // Obtain a pointer to a new vertex buffer. HR(gd3dDevice->CreateVertexBuffer(24 * sizeof(VertexPN), D3DUSAGE_WRITEONLY, 0, D3DPOOL_MANAGED, &mVB, 0)); // Now lock it to obtain a pointer to its internal data, and write the // cube's vertex data. // NOTE: One key point to note is that with normals, we no longer have eight // unique vertices for the cube. This is because, even though the vertices // share spatial data, they do not share normal data. VertexPN* v = 0; HR(mVB->Lock(0, 0, (void**)&v, 0)); // fill in the front face vertex data v[0] = VertexPN(-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f); v[1] = VertexPN(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f); v[2] = VertexPN( 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f); v[3] = VertexPN( 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f); // fill in the back face vertex data v[4] = VertexPN(-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f); v[5] = VertexPN( 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f); v[6] = VertexPN( 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f); v[7] = VertexPN(-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f); // fill in the top face vertex data v[8] = VertexPN(-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f); v[9] = VertexPN(-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f); v[10] = VertexPN( 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f); v[11] = VertexPN( 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f); // fill in the bottom face vertex data v[12] = VertexPN(-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f); v[13] = VertexPN( 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f); v[14] = VertexPN( 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f); v[15] = VertexPN(-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f); // fill in the left face vertex data v[16] = VertexPN(-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f); v[17] = VertexPN(-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f); v[18] = VertexPN(-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f); v[19] = VertexPN(-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f); // fill in the right face vertex data v[20] = VertexPN( 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f); v[21] = VertexPN( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f); v[22] = VertexPN( 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f); v[23] = VertexPN( 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f); HR(mVB->Unlock()); } void DiffuseCubeDemo::buildIndexBuffer() { // Obtain a pointer to a new index buffer. HR(gd3dDevice->CreateIndexBuffer(36 * sizeof(WORD), D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, D3DPOOL_MANAGED, &mIB, 0)); // Now lock it to obtain a pointer to its internal data, and write the // cube's index data. WORD* k = 0; HR(mIB->Lock(0, 0, (void**)&k, 0)); // fill in the front face index data k[0] = 0; k[1] = 1; k[2] = 2; k[3] = 0; k[4] = 2; k[5] = 3; // fill in the back face index data k[6] = 4; k[7] = 5; k[8] = 6; k[9] = 4; k[10] = 6; k[11] = 7; // fill in the top face index data k[12] = 8; k[13] = 9; k[14] = 10; k[15] = 8; k[16] = 10; k[17] = 11; // fill in the bottom face index data k[18] = 12; k[19] = 13; k[20] = 14; k[21] = 12; k[22] = 14; k[23] = 15; // fill in the left face index data k[24] = 16; k[25] = 17; k[26] = 18; k[27] = 16; k[28] = 18; k[29] = 19; // fill in the right face index data k[30] = 20; k[31] = 21; k[32] = 22; k[33] = 20; k[34] = 22; k[35] = 23; HR(mIB->Unlock()); } void DiffuseCubeDemo::buildFX() { // Create the FX from a .fx file. ID3DXBuffer* errors = 0; HR(D3DXCreateEffectFromFile(gd3dDevice, "diffuse.fx", 0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors)); if( errors ) MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0); // Obtain handles. mhTech = mFX->GetTechniqueByName("DiffuseTech"); mhWVP = mFX->GetParameterByName(0, "gWVP"); mhWorldInverseTranspose = mFX->GetParameterByName(0, "gWorldInverseTranspose"); mhLightVecW = mFX->GetParameterByName(0, "gLightVecW"); mhDiffuseMtrl = mFX->GetParameterByName(0, "gDiffuseMtrl"); mhDiffuseLight = mFX->GetParameterByName(0, "gDiffuseLight"); } void DiffuseCubeDemo::buildViewMtx() { float x = mCameraRadius * cosf(mCameraRotationY); float z = mCameraRadius * sinf(mCameraRotationY); D3DXVECTOR3 pos(x, mCameraHeight, z); D3DXVECTOR3 target(0.0f, 0.0f, 0.0f); D3DXVECTOR3 up(0.0f, 1.0f, 0.0f); D3DXMatrixLookAtLH(&mView, &pos, &target, &up); } void DiffuseCubeDemo::buildProjMtx() { float w = (float)md3dPP.BackBufferWidth; float h = (float)md3dPP.BackBufferHeight; D3DXMatrixPerspectiveFovLH(&mProj, D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f); }
diffuse.fx
//============================================================================= // diffuse.fx by Frank Luna (C) 2004 All Rights Reserved. // // Does basic diffuse lighting. //============================================================================= uniform extern float4x4 gWorldInverseTranspose; uniform extern float4x4 gWVP; uniform extern float4 gDiffuseMtrl; uniform extern float4 gDiffuseLight; uniform extern float3 gLightVecW; struct OutputVS { float4 posH : POSITION0; float4 color : COLOR0; }; OutputVS DiffuseVS(float3 posL : POSITION0, float3 normalL : NORMAL0) { // Zero out our output. OutputVS outVS = (OutputVS)0; // Transform normal to world space. float3 normalW = mul(float4(normalL, 0.0f), gWorldInverseTranspose).xyz; normalW = normalize(normalW); // Compute the color: Equation 10.1. float s = max(dot(gLightVecW, normalW), 0.0f); outVS.color.rgb = s*(gDiffuseMtrl*gDiffuseLight).rgb; outVS.color.a = gDiffuseMtrl.a; // Transform to homogeneous clip space. outVS.posH = mul(float4(posL, 1.0f), gWVP); // Done--return the output. return outVS; } float4 DiffusePS(float4 c : COLOR0) : COLOR { return c; } technique DiffuseTech { pass P0 { // Specify the vertex and pixel shader associated with this pass. vertexShader = compile vs_2_0 DiffuseVS(); pixelShader = compile ps_2_0 DiffusePS(); } }