bzoj2734【HNOI2012】集合选数

2734: [HNOI2012]集合选数

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 831   Solved: 487
[ Submit][ Status][ Discuss]

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。 
 

Input

 只有一行,其中有一个正整数 n,30%的数据满足 n≤20。 
 

Output


 仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。 
 

Sample Input


4

Sample Output

8

【样例解释】

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

HINT

Source

day2




状压DP思路好题

写出这样一个矩阵

1 3 9 27 …

2 6 18 54 …

4 12 36 108 …

可以发现最多有12行。

这样我们只要枚举左上角的数x,就可以得到一个不同的矩阵,对于每一个矩阵需要选一些数,但不能选相邻的数,状压DP解决。

对于每一个矩阵,把方案数相乘即为答案。




#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 100005
#define mod 1000000001
using namespace std;
int n;
ll ans=1,f[20][4100],num[20];
bool vst[maxn];
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
inline ll calc(int x)
{
	int cnt=0;
	memset(num,0,sizeof(num));
	memset(f,0,sizeof(f));
	f[0][0]=1;
	while (x<=n)
	{
		cnt++;
		int tmp=x;
		while (tmp<=n)
		{
			num[cnt]++;
			vst[tmp]=true;
			tmp*=3;
		}
		F(i,0,(1<<num[cnt])-1)
		{
			int p;
			for(p=1;p<num[cnt];p++) if ((i&(1<<(p-1)))&&(i&(1<<p))) break;
			if (p!=num[cnt]) continue;
			F(j,0,(1<<num[cnt-1])-1) if (!(i&j)) (f[cnt][i]+=f[cnt-1][j])%=mod;
		}
		x*=2;
	}
	ll t=0;
	F(i,0,(1<<num[cnt])-1) (t+=f[cnt][i])%=mod;
	return t;
}
int main()
{
	memset(vst,false,sizeof(vst));
	n=read();
	F(i,1,n) if (!vst[i]) (ans*=calc(i))%=mod;
	printf("%lld\n",ans);
	return 0;
}


你可能感兴趣的:(dp,bzoj)