题意:给出一组频率,让你建立一个二叉树,计算每个节点的频率×层数,使得这个值最小,问最小的值是多少。
设f(i, j)表示序列区间(i, j)的数构成的一棵最优二叉查找树的值,
当枚举根节点ek时,它的左子树(wi,wi+1,..,wk-1)的所有节点的深度都会增加1,
那么左子树增加sum(w1,w2,...wk-1)
右子树(ek+1, ek+2,..ej)的值也会增加sum(ek+1,ek+2,...,ej).
可以看出,那么总共会增加sum(i, j) - wk
---fromshangde大神
状态转移方程就是:dp[i][j] = min(dp[i][k - 1] + dp[k + 1] + sum(i, j) - a[i])
代码:
/* * Author: illuz <iilluzen[at]gmail.com> * Blog: http://blog.csdn.net/hcbbt * File: uva10304.cpp * Create Date: 2013-11-12 22:32:08 * Descripton: invertel dp */ #include <cstdio> #include <cstring> #define min(a, b) ((a) < (b) ? (a) : (b)) const int MAXN = 210; int n, a[MAXN], sum[MAXN]; int dp[MAXN][MAXN]; int main() { while (scanf("%d", &n) != EOF) { for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; } for (int d = 2; d <= n; d++) for (int l = 1; l + d - 1 <= n; l++) { int r = l + d - 1; dp[l][r] = 0x7ffffff; for (int i = l; i <= r; i++) dp[l][r] = min(dp[l][r], dp[l][i - 1] + dp[i + 1][r] + sum[r] - sum[l - 1] - a[i]); } printf("%d\n", dp[1][n]); } return 0; }