- 视觉表征和多模态融合
一只齐刘海的猫
语言模型
视觉表征和多模态融合是当前人工智能领域的研究热点,特别是在计算机视觉和自然语言处理的交叉领域。视觉表征是指将图像或视频信息转化为模型可以处理的向量形式,而多模态融合则是将不同类型的数据(如视觉、文本、音频等)进行整合,以实现更全面、准确的信息理解和处理。视觉表征(VisualRepresentation)目的:将图像或视频数据转化为深度学习模型可以理解的特征向量。方法:卷积神经网络(CNN):传
- JavaWeb开发1
偷萧逸苦茶
java
JavaWeb什么是web?全球广域网,能够通过浏览器访问的网站Web网站工作流程Web前端开发网页有哪些部分组成?文字,图片,音频,视频,超链接...我们看到的网页本质是程序员写的前端代码前端代码如何转换成用户眼中的网页?通过浏览器解析和渲染浏览器中对代码解析渲染的部分称为浏览器内核Web标准HTML:负责网页结构(页面元素和内容)CSS:负责网页的表现(页面元素外观,位置等页面样式,如颜色、大
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- AI人工智能领域必备:AI芯片的关键作用
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能ai
AI人工智能领域必备:AI芯片的关键作用关键词:AI芯片、算力、神经网络、能效比、专用架构、异构计算、存算一体摘要:在人工智能高速发展的今天,从手机里的“语音助手”到马路上的“自动驾驶汽车”,从医院的“智能影像诊断”到工厂的“机器人流水线”,AI技术的落地离不开一个“幕后大功臣”——AI芯片。本文将用“快递分拣工厂”“人脑神经村”等生活案例,带你一步一步理解AI芯片的核心作用、工作原理和未来趋势,
- 国内知名的语音芯片厂家介绍(附主要产品线和型号)
唯创知音
语音识别人工智能
这个厂商成1999年成立于广州,随后2000年进军语音芯片行业,2003年研发出叉车超速报警器,2004年研发出MP3音频芯片,并提供MP3方案,随着业务快速扩张2014年搬迁至深圳并更名深圳唯创知音电子有限公司。唯创知音旗下主要产品线介绍1.OTP语音芯片型号:WTN6020(20秒)、WTN6040(40秒)、WTN6080(80秒)、WTN6170(170秒)特点:低功耗(待机电流≤2μA)
- 在html中主要支持的音频格式,html5中audio支持音频格式
HTML5Audio标签能够支持wav,mp3,ogg,acc,webm等格式,但有个很重要的音乐文件格式midi(扩展名mid)却在各大浏览器中都没有内置的支持。不是所有的浏览器都支持MP3OGG之类的,每个浏览器因为版权的问题支持的格式都是不一样的。浏览器和音频兼容性浏览器制造商并非都同意使用某种音频文件格式。对于图像,PNG、JPEG或GIF格式的文件在任何浏览器上都能加载到您的网页里。遗憾
- HTML5里video标签支持哪些格式的视频文件
Lucky_chengzi
video标签支持的视频格式:Ogg、MPEG4、WebMMP4=MPEG4文件使用H264视频编解码器和AAC音频编解码器WebM=WebM文件使用VP8视频编解码器和Vorbis音频编解码器Ogg=Ogg文件使用Theora视频编解码器和Vorbis音频编解码器
- Kimi Audio一个通用的音频基础模型处理各种任务如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话
skywalk8163
人工智能xcodeidekaggleKimiAudio
KimiAudio被设计为一个通用的音频基础模型,能够在一个统一的框架内处理各种音频处理任务。主要功能包括:通用功能:处理各种任务,如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话。最先进的性能:在众多音频基准测试中取得SOTA结果(见评估和技术报告)。大规模预训练:对超过1300万小时的各种音频数据
- HarmonyOS开发:使用语音识别的步骤演示
引言在当下的生活与工作场景中,语音识别技术早已渗透到方方面面——从手机上的语音助手快速拨打电话、发送消息,到智能音箱根据语音指令播放音乐、查询天气,再到办公场景里通过语音转文字功能高效记录会议纪要,其应用的广泛性不言而喻。而HarmonyOS在语音识别领域展现出了强大的技术实力,为用户带来了全方位的支持。它不仅能够精准识别普通话,满足大多数用户的日常需求,还兼容多种方言以及外语,极大地拓宽了使用范
- Python Pygame贪吃蛇游戏开发实战教程
罗博深
本文还有配套的精品资源,点击获取简介:PythonPygame贪吃蛇游戏是一个基础而经典的项目,使用Pygame库构建简单的游戏环境。玩家控制一条蛇,在屏幕上移动并吃食物来增长。Pygame库简化了游戏开发过程,提供了渲染、音频处理和事件管理功能。本文将详细阐述游戏开发的核心概念和代码结构,包括Pygame初始化、窗口创建、事件处理、图像渲染、对象设计、碰撞检测、时间管理、游戏状态和音效处理,帮助
- 视频工具箱 1.1.1 |小而美的视频处理工具,支持多种常用功能
星图软件库
软件分享音视频软件工程
VideoTools是一款基于FFmpeg的小而美的视频处理工具,专为需要快速高效地进行视频编辑的用户设计。这款工具无需安装,体积仅约200KB,提供了视频压缩、格式转换、转GIF、修改分辨率、加速播放以及音频提取等多种常用功能。其用户界面简洁直观,上手即用,首次运行时可自动下载或手动指定FFmpeg路径。此外,VideoTools还支持GPU加速(兼容Intel、AMD、Nvidia显卡),让视
- 05 RTMP Chunk Stream
皓瑞 =)
RTMP协议音视频
RTMP块流本节指定实时消息传递协议区块流(RTMP区块流)。它为更高级的多媒体流协议提供多路复用和分组服务。虽然RTMP区块流设计用于与实时消息协议(第6节)配合使用,但它可以处理发送消息流的任何协议。每条消息都包含时间戳和有效负载类型标识。RTMPChunkStream和RTMP一起适用于各种音频视频应用,从一对一和一对多直播到视频点播服务再到交互式会议应用。当与可靠的传输协议(如TCP[RF
- AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
- 【Python爬虫(65)】突破壁垒,深入挖掘:Python爬取行业报告网站全攻略
奔跑吧邓邓子
Python爬虫python爬虫开发语言行业报告
【Python爬虫】专栏简介:本专栏是Python爬虫领域的集大成之作,共100章节。从Python基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发者,都能从中汲取知识,助力掌握爬虫核心技能,开拓技术视野。目录一、引言二、攻克访问权限与加密机制2.1分析网站访问权限2.2应对
- 浅析通用文字识别OCR技术的工作过程及其应用场景
AI人工智能+
TEL18600524535人工智能ocr计算机视觉图像处理文字识别
通用文字识别技术作为人工智能领域的重要分支,正深刻地改变着人们的生活与工作方式。通用文字识别技术基于光学字符识别(OCR)技术发展而来,其核心原理是通过对图像中文字的特征提取与分析,将其转化为计算机能够理解和处理的文本信息。这一过程涉及多个关键步骤:图像预处理:输入的图片可能存在光照不均、倾斜、模糊等问题,预处理阶段会对图像进行灰度化、降噪、二值化、倾斜校正等操作,以提高文字的清晰度和可识别性。例
- 五度调值与五声音阶的关联
音元系统
音元系统语音识别语言模型自然语言处理语音标调
五度调值与五声音阶的关联:跨学科认知研究摘要本文系统考察赵元任五度标调法与中国传统五声调式(宫-商-角-徵-羽)的认知同构性。通过语音学实验与音乐理论分析,揭示两者在数理结构/感知机制和文化原型上的深层关联。研究结合对数频率映射、Sigmoid平滑模型等计算方法,提出跨模态音高认知的统一解释框架,为语言与音乐的协同演化提供实证支持。1.引言1.1研究背景五度制标调法:赵元任(1930)创立的5级相
- 蒙特卡罗方法与深度学习的关系
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
蒙特卡罗方法与深度学习的关系作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来蒙特卡罗方法和深度学习都是近年来在计算科学和人工智能领域取得重大突破的技术。蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于物理、工程、金融等领域。深度学习则是一种基于人工神经网络的学习方法,在图像识别、语音识别、自然语言处理等领域取得了显
- AI人工智能 语音识别
马里亚纳海沟网
人工智能语音识别python学习运维笔记
AI人工智能构建语音识别器语音识别或自动语音识别(ASR)是AI机器人等AI项目的关注焦点。没有ASR,就不可能想象一个认知机器人与人进行交互。但是,构建语音识别器并不容易。开发语音识别系统的困难开发高质量的语音识别系统确实是一个难题。语音识别技术的困难可以广泛地表征为如下所讨论的许多维度-词汇大小词汇大小影响开发ASR的难易程度。考虑以下词汇量以便更好地理解。例如,在一个语音菜单系统中,一个小词
- 基于Python的智能语音识别系统设计
MATLAB算法工程师Y
python语音识别开发语言
引言语言是人类最原始直接的一种交流方式,通俗易懂、便于理解。随着科技的发展,语言交流不再只存在于人与人之间,如何让机器“听懂”人类的语言并做出反应成为人工智能的重要课题,语音智能交互技术应运而生。作为其中重要一环的语音识别技术近年来不断发展,走出了实验室,随着人工智能进入人们的日常生活中。当今市场上语音识别技术相关的软件、商品涉及人类生活的方方面面,语音识别的实用性已经得到充分的印证。如今语音识别
- 基于python的语音识别系统,Python语音识别技术路线
快乐的小肥熊
ai智能写作python语音识别开发语言cnn
如何用python调用百度语音识别1、首先需要打开百度AI语音系统,开始编写代码,如图所示,编写好回车。2、然后接下来再试一下的音频,开始编写成功回车,如图所示的编写。3、最后,查看音频c的属性,可以看到音频持续28秒,这样就是用python调用百度语音识别成功解决问题。谷歌人工智能写作项目:神经网络伪原创Python语音识别,调用的是哪个客户端接口函数调用腾讯云的语音识别(一句话识别)接口-Py
- 人工智能训练知识学习-TTS(智能语音合成)
笨鸟笃行
人工智能学习
人机对话——TTS(TextToSpeech)概念:TTS技术,即文本转语音技术,是一种将文字内容转换为语音输出的技术。它通过计算机程序和算法,将文本信息转化为自然流畅的语音信号,让用户能够听到文字内容,而无需手动阅读。(即将文本转换为语音输出)TTS技术的工作原理(一)文本预处理当TTS系统接收到一段文本输入时,首先会对文本进行预处理。这包括分词、词性标注、语义理解等操作。例如,在中文文本中,系
- Python 语音识别与语音合成的实现方法
加班不如去钓鱼
python语音识别xcode
```htmlPython语音识别与语音合成的实现方法Python语音识别与语音合成的实现方法随着人工智能技术的发展,语音处理在实际应用中变得越来越重要。Python作为一种功能强大的编程语言,提供了丰富的库和工具来实现语音识别和语音合成的功能。本文将详细介绍如何使用Python实现语音识别与语音合成。一、语音识别语音识别(SpeechRecognition)是将人类的语音转换为文本的过程。Pyt
- 小学期前端三件套学习(更新中)
第一阶段HTML基础结构页面标题页面内容常用内容标签文本类标签•~:标题(h1每个页面建议只用一次)•:段落•:行内文本容器•:加粗强调•:斜体强调媒体类标签•:图片(alt属性必须写)•:音频•:视频下拉框请选择选项1选项2选项3国家:--请选择--中国美国列表标签项目第一项超链接与锚点外部链接跳转到章节邮件链接表格![[Pastedimage20250628100803.png]]源码.tab
- Python脚本,音频格式转换 和 视频格式转换
一、音频格式转换完整代码frompydubimportAudioSegmentimportosdefconvert_audio(input_dir,output_dir,target_format):ifnotos.path.exists(output_dir):os.makedirs(output_dir)forfilenameinos.listdir(input_dir):iffilename
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Python音频库
龅牙内马尔
Python音频库Python有一些很棒的音频处理库,比如Librosa和PyAudio。还有一些内置的模块(内置库wave)用于一些基本的音频功能。我们将主要使用两个库进行音频采集和分析:1.LibrosaLibrosa是一个用于音频、音乐分析、处理的python工具包,一些常见的时频处理、特征提取、绘制声音图形等功能应有尽有,功能十分强大。功能实现:读取音频提取特征提取Log-MelSpect
- 极客时间-《搞定音频技术》-学习笔记
Mark White
音视频学习笔记
极客时间-《搞定音频技术》-学习笔记语音基础知识https://www.zhangzhenhu.com/audio/feature.html序章-0作者说这个语音技术啊,未来肯定前景大好啊,大家都来学习,然后给出了课程的脑图音频基础什么是声音声音的三要素是指响度、音调和音色,它们都是声音的主观属性,用来描述声音的特征。响度指声音的强弱,音调指声音的高低,音色指声音的质量或特征。响度(Loudnes
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- 阿里云一句话语音识别
前端:阿里云语音识别应用(一句话语音识别){{isRecording?'停止录音':'开始录音'}}识别结果:{{recognitionResult}}WebSocket状态:{{websocketStatus}}使用的音频格式:{{usedMimeType}}import{ref,onMounted,onUnmounted}from'vue'//状态管理constisRecording=ref(
- Unity使用讯飞语音模型(语音合成+语音识别+语音唤醒)Window端SDK
苏轼轼
语音识别人工智能
1.查看官方文档、登录并下载我们所需的SDK。语音唤醒需要我们设置唤醒词。讯飞智能语音SDK文档官网讯飞智能语音产品介绍官网在控制台下载对应SDK,由于讯飞官方只提供了C++/C语音版本,我们需要用C#调用下载SDK的dll库文件。2.将dll库拖进Unity项目中如果目标设备为64位,我们选择msc_x64.dll;如果是32位,我们选择msc.dll。另外我们如果要使用语音唤醒功能,还需要wa
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多