本篇主要是介绍opencv的FloodFill(漫水填充)和基于它实现的物体选取。
C++: int floodFill(InputOutputArray image, InputOutputArray mask, Point seedPoint, Scalar newVal, Rect* rect=0, Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), int flags=4 );
InputOutputArray:输入和输出图像。 mask: 输入的掩码图像。 seedPoint: 算法开始处理的开始位置。 newVal: 图像中所有被算法选中的点,都用这个数值来填充。 rect: 最小包围矩阵。 loDiff: 最大的低亮度之间的差异。 upDiff: 最大的高亮度之间的差异。 flag: 选择算法连接方式。
简单的说,就是选中点seedPoint,然后选取出它周围和它色彩差异不大的点,并将它们的值改为newVal。如果被选取的点,遇到mask掩码,则放弃对该方向的 蔓延填充。
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> using namespace cv; using namespace std; int loDiff = 20, upDiff = 20; Mat image0, image, mask; int newMaskVal = 255; static void onMouse( int event, int x, int y, int, void* ){ Mat dst = image; Point seed = Point(x,y); Scalar newVal = Scalar(0, 0, 0); Rect ccomp; int lo = loDiff; int up = upDiff; int flags = 8 + (newMaskVal << 8) + CV_FLOODFILL_FIXED_RANGE; floodFill(dst, mask, seed, newVal, &ccomp, Scalar(lo, lo, lo), Scalar(up, up, up), flags); imshow("11", dst); } int main( int argc, char** argv ){ char* filename = argv[1]; image0 = imread(filename, 1); image0.copyTo(image); mask.create(image0.rows+2, image0.cols+2, CV_8UC1); cv::rectangle(mask,cvPoint(0, 0),cvPoint(100, 100),cvScalar(255,255,255), 8); namedWindow( "image", 0); createTrackbar( "lo_diff", "image", &loDiff, 255, 0 ); createTrackbar( "up_diff", "image", &upDiff, 255, 0 ); imshow("11", image); imshow("22", mask); setMouseCallback("11", onMouse, 0 ); waitKey(0); return 0; }
1、装载需要被处理的图片到image0,接着复制图片信息到image。
char* filename = argv[1]; image0 = imread(filename, 1); image0.copyTo(image);
2、设置掩码,注意掩码大小需要是图片长宽+2。接着框选了一个矩形的掩码区域。
mask.create(image0.rows+2, image0.cols+2, CV_8UC1); cv::rectangle(mask,cvPoint(0, 0),cvPoint(100, 100),cvScalar(255,255,255), 8);
3、设置了两个Trackbar,用来可以动态设置loDiff和upDiff的大小。
namedWindow( "image", 0); createTrackbar( "lo_diff", "image", &loDiff, 255, 0 ); createTrackbar( "up_diff", "image", &upDiff, 255, 0 );
4、显示原图像和掩码图像,同时注册了mouse处理函数。
imshow("11", image); imshow("22", mask); setMouseCallback("11", onMouse, 0 );
5、鼠标选取参考点,设置floodFill使用动态蔓延的8连通算法,显示出被floodFill处理后图片。
static void onMouse( int event, int x, int y, int, void* ){ Mat dst = image; Point seed = Point(x,y); Scalar newVal = Scalar(0, 0, 0); Rect ccomp; int lo = loDiff; int up = upDiff; int flags = 8 + (newMaskVal << 8) + CV_FLOODFILL_FIXED_RANGE; floodFill(dst, mask, seed, newVal, &ccomp, Scalar(lo, lo, lo), Scalar(up, up, up), flags); imshow("11", dst); }
1、原图像:
2、掩码图像:
3、选择天空之后的生成图像:
所谓的物体选取,就是首先探测出图像的边沿,然后用边沿作为掩码,接着用FloodFill来处理选择选取的点。
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <opencv2/core/core.hpp> #include <opencv2/core/mat.hpp> #include <math.h> #include <string.h> #include <opencv/cv.h> #include <stdio.h> #include "xihua_2.h" #include <iostream> using namespace cv; using namespace std; int loDiff = 20, upDiff = 20; Mat image0, image, mask; int newMaskVal = 255; int ratio = 3; int kernel_size = 3; int lowThreshold = 43; class MorphoFeatures{ private: cv::Mat cross; cv::Mat diamond; cv::Mat square; cv::Mat x; public: cv::Mat getEdges(const cv::Mat &image){ cv::Mat result; cv::morphologyEx(image,result,cv::MORPH_GRADIENT,cv::Mat()); applyThreshold(result); return result; } void applyThreshold(cv::Mat & result){ cv::threshold(result,result, 40,255,cv::THRESH_BINARY); } }; MorphoFeatures morpho; void MyResize(Mat& mat1, Mat& mat2, int width, int height){ IplImage pI_1 = mat1, pI_2; mat2 = cv::Mat(width, height, CV_8UC1, 1); pI_2 = mat2; cvResize(&pI_1, &pI_2, 1); } static void onMouse( int event, int x, int y, int, void* ){ Mat dst = image; Point seed = Point(x,y); Scalar newVal = Scalar(0, 0, 0); Rect ccomp; int lo = loDiff; int up = upDiff; int flags = 8 + (newMaskVal << 8) + CV_FLOODFILL_FIXED_RANGE; if(event == CV_EVENT_LBUTTONDOWN){ floodFill(dst, mask, seed, newVal, &ccomp, Scalar(lo, lo, lo), Scalar(up, up, up), flags); imshow("22", dst); } } int main( int argc, char** argv ){ char* filename = argv[1]; image0 = imread(filename, 1); if( image0.empty() ){ cout << "Image empty. Usage: ffilldemo <image_name>\n"; return 0; } image0.copyTo(image); mask.create(image0.rows, image0.cols, CV_8UC1); mask = morpho.getEdges(image); cvtColor(mask, mask, COLOR_BGR2GRAY); MyResize(mask, mask, image0.rows+2, image0.cols+2); namedWindow( "image", 0); createTrackbar( "lo_diff", "image", &loDiff, 255, 0 ); createTrackbar( "up_diff", "image", &upDiff, 255, 0 ); imshow("00", mask); imshow("11", image); setMouseCallback("11", onMouse, 0 ); waitKey(0); return 0; }
很多都和前面FloodFill使用例子的代码一样,这里只讲下mask掩码相关部分。 首先创造掩码图像,接着使用morpho.getEdges获取到原图像image的边沿,并保存到掩码图像中,然后更具函数FloofFill的要求,将mask图像大小调整为原图像长宽+2。
mask.create(image0.rows, image0.cols, CV_8UC1); mask = morpho.getEdges(image); cvtColor(mask, mask, COLOR_BGR2GRAY); MyResize(mask, mask, image0.rows+2, image0.cols+2);
1、原图像:
2、掩码图像:
3、选择花盆之后的生成图像: