Java源码之ConcurrentHashMap
一个比Hashtable性能更优的线程安全的Map类,它就是ConcurrentHashMap,本文基于Java 7的源码做剖析。
从JDK1.2起,就有了HashMap,正如前一篇文章所说,HashMap不是线程安全的,因此多线程操作时需要格外小心。在JDK1.5中,伟大的Doug Lea给我们带来了concurrent包(即java.util.concurrent包),从此Map也有安全的了。
多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。虽然已经有一个线程安全的HashTable,但是HashTable容器使用synchronized(他的get和put方法的实现代码如下)来保证线程安全,在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,访问其他同步方法的线程就可能会进入阻塞或者轮训状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。
public synchronized V get(Object key) { Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return (V)e.value; } } return null; } public synchronized V put(K key, V value) { // Make sure the value is not null if (value == null) { throw new NullPointerException(); } // Makes sure the key is not already in the hashtable. Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> entry = (Entry<K,V>)tab[index]; for(; entry != null ; entry = entry.next) { if ((entry.hash == hash) && entry.key.equals(key)) { V old = entry.value; entry.value = value; return old; } } addEntry(hash, key, value, index); return null; }
实现原理在这么恶劣的环境下,ConcurrentHashMap应运而生。
ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。如下图是ConcurrentHashMap的内部结构图:
从图中可以看到,ConcurrentHashMap内部分为很多个Segment,每一个Segment拥有一把锁,然后每个Segment(继承ReentrantLock)下面包含很多个HashEntry列表数组。对于一个key,需要经过三次(为什么要hash三次下文会详细讲解)hash操作,才能最终定位这个元素的位置,这三次hash分别为:
1. 对于一个key,先进行一次hash操作,得到hash值h1,也即h1 = hash1(key);
2. 将得到的h1的高几位进行第二次hash,得到hash值h2,也即h2 = hash2(h1高几位),通过h2能够确定该元素的放在哪个Segment;
3. 将得到的h1进行第三次hash,得到hash值h3,也即h3 = hash3(h1),通过h3能够确定该元素放置在哪个HashEntry。
先看看ConcurrentHashMap的初始化做了哪些事情,构造函数的源码如下:
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
初始化的一些动作:
1.验证参数的合法性,如果不合法,直接抛出异常。
2.concurrencyLevel也就是Segment的个数不能超过规定的最大Segment的个数,默认值为static final int MAX_SEGMENTS = 1 << 16;,如果超过这个值,设置为这个值。
3.然后使用循环找到大于等于concurrencyLevel的第一个2的n次方的数ssize,这个数就是Segment数组的大小,并记录一共向左按位移动的次数sshift,并令segmentShift = 32 - sshift,并且segmentMask的值等于ssize - 1,segmentMask的各个二进制位都为1,目的是之后可以通过key的hash值与这个值做&运算确定Segment的索引。
4.检查给的容量值是否大于允许的最大容量值,如果大于该值,设置为该值。最大容量值为static final int MAXIMUM_CAPACITY = 1 << 30;。
5.然后计算每个Segment平均应该放置多少个元素,这个值c是向上取整的值。比如初始容量为15,Segment个数为4,则每个Segment平均需要放置4个元素。
6.最后创建一个Segment实例,将其当做Segment数组的第一个元素。
put操作的源码如下:
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
1. 判断value是否为null,如果为null,直接抛出异常。操作步骤如下:
2. key通过一次hash运算得到一个hash值。(这个hash运算下文详说)
3. 将得到hash值向右按位移动segmentShift位,然后再与segmentMask做&运算得到segment的索引j。
在初始化的时候我们说过segmentShift的值等于32-sshift,例如concurrencyLevel等于16,则sshift等于4,则segmentShift为28。hash值是一个32位的整数,将其向右移动28位就变成这个样子:
0000 0000 0000 0000 0000 0000 0000 xxxx,然后再用这个值与segmentMask做&运算,也就是取最后四位的值。这个值确定Segment的索引。
4. 使用Unsafe的方式从Segment数组中获取该索引对应的Segment对象。
5. 向这个Segment对象中put值,这个put操作也基本是一样的步骤(通过&运算获取HashEntry的索引,然后set)。
get操作的源码如下:
public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
1. 和put操作一样,先通过key进行两次hash确定应该去哪个Segment中取数据。操作步骤为:
2. 使用Unsafe获取对应的Segment,然后再进行一次&运算得到HashEntry链表的位置,然后从链表头开始遍历整个链表(因为Hash可能会有碰撞,所以用一个链表保存),如果找到对应的key,则返回对应的value值,如果链表遍历完都没有找到对应的key,则说明Map中不包含该key,返回null。
size操作与put和get操作最大的区别在于,size操作需要遍历所有的Segment才能算出整个Map的大小,而put和get都只关心一个Segment。假设我们当前遍历的Segment为SA,那么在遍历SA过程中其他的Segment比如SB可能会被修改,于是这一次运算出来的size值可能并不是Map当前的真正大小。所以一个比较简单的办法就是计算Map大小的时候所有的Segment都Lock住,不能更新(包含put,remove等等)数据,计算完之后再Unlock。
这是普通人能够想到的方案,但是牛逼的作者还有一个更好的Idea:先给3次机会,不lock所有的Segment,遍历所有Segment,累加各个Segment的大小得到整个Map的大小,如果某相邻的两次计算获取的所有Segment的更新的次数(每个Segment都有一个modCount变量,这个变量在Segment中的Entry被修改时会加一,通过这个值可以得到每个Segment的更新操作的次数)是一样的,说明计算过程中没有更新操作,则直接返回这个值。如果这3次不加锁的计算过程中Map的更新次数有变化,则之后的计算先对所有的Segment加锁,再遍历所有Segment计算Map大小,最后再解锁所有Segment。源代码如下:
public int size() { // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation } sum = 0L; size = 0; overflow = false; for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); } } return overflow ? Integer.MAX_VALUE : size; }
举个例子:
一个Map有4个Segment,标记为S1,S2,S3,S4,现在我们要获取Map的size。计算过程是这样的:第一次计算,不对S1,S2,S3,S4加锁,遍历所有的Segment,假设每个Segment的大小分别为1,2,3,4,更新操作次数分别为:2,2,3,1,则这次计算可以得到Map的总大小为1+2+3+4=10,总共更新操作次数为2+2+3+1=8;第二次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设这次每个Segment的大小变成了2,2,3,4,更新次数分别为3,2,3,1,因为两次计算得到的Map更新次数不一致(第一次是8,第二次是9)则可以断定这段时间Map数据被更新,则此时应该再试一次;第三次计算,不对S1,S2,S3,S4加锁,遍历所有Segment,假设每个Segment的更新操作次数还是为3,2,3,1,则因为第二次计算和第三次计算得到的Map的更新操作的次数是一致的,就能说明第二次计算和第三次计算这段时间内Map数据没有被更新,此时可以直接返回第三次计算得到的Map的大小。最坏的情况:第三次计算得到的数据更新次数和第二次也不一样,则只能先对所有Segment加锁再计算最后解锁。
containsValue操作采用了和size操作一样的想法:
public boolean containsValue(Object value) { // Same idea as size() if (value == null) throw new NullPointerException(); final Segment<K,V>[] segments = this.segments; boolean found = false; long last = 0; int retries = -1; try { outer: for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // force creation } long hashSum = 0L; int sum = 0; for (int j = 0; j < segments.length; ++j) { HashEntry<K,V>[] tab; Segment<K,V> seg = segmentAt(segments, j); if (seg != null && (tab = seg.table) != null) { for (int i = 0 ; i < tab.length; i++) { HashEntry<K,V> e; for (e = entryAt(tab, i); e != null; e = e.next) { V v = e.value; if (v != null && value.equals(v)) { found = true; break outer; } } } sum += seg.modCount; } } if (retries > 0 && sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); } } return found; }
大家一定还记得使用一个key定位Segment之前进行过一次hash操作吧?这次hash的作用是什么呢?看看hash的源代码:
private int hash(Object k) { int h = hashSeed; if ((0 != h) && (k instanceof String)) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); }
源码中的注释是这样的:
Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because ConcurrentHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.
这里用到了Wang/Jenkins hash算法的变种,主要的目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。
举个简单的例子:
System.out.println(Integer.parseInt("0001111", 2) & 15); System.out.println(Integer.parseInt("0011111", 2) & 15); System.out.println(Integer.parseInt("0111111", 2) & 15); System.out.println(Integer.parseInt("1111111", 2) & 15);
这些数字得到的hash值都是一样的,全是15,所以如果不进行第一次预hash,发生冲突的几率还是很大的,但是如果我们先把上例中的二进制数字使用hash()函数先进行一次预hash,得到的结果是这样的:
0100|0111|0110|0111|1101|1010|0100|1110
1111|0111|0100|0011|0000|0001|1011|1000
0111|0111|0110|1001|0100|0110|0011|1110
1000|0011|0000|0000|1100|1000|0001|1010
上面这个例子引用自: InfoQ
可以看到每一位的数据都散开了,并且ConcurrentHashMap中是使用预hash值的高位参与运算的。比如之前说的先将hash值向右按位移动28位,再与15做&运算,得到的结果都别为:4,15,7,8,没有冲突!
import java.util.concurrent.ConcurrentHashMap; public class ConcurrentHashMapTest { private static ConcurrentHashMap<Integer, Integer> map = new ConcurrentHashMap<Integer, Integer>(); public static void main(String[] args) { Thread t1 = new Thread("Thread1") { @Override public void run() { map.put(3, 33); System.out.println("Threa1 start"); } }; Thread t2 = new Thread("Thread2") { @Override public void run() { map.put(4, 44); System.out.println("Threa2 start"); } }; Thread t3 = new Thread("Thread3") { @Override public void run() { map.put(7, 77); System.out.println("Threa3 start"); } }; t1.start(); t2.start(); t3.start(); System.out.println(map); } }
ConcurrentHashMap中默认是把segments初始化为长度为16的数组。
根据ConcurrentHashMap.segmentFor的算法,3、4对应的Segment都是segments[1],7对应的Segment是segments[12]。
(1)Thread1和Thread2先后进入Segment.put方法时,Thread1会首先获取到锁,可以进入,而Thread2则会阻塞在锁上:
(2)切换到Thread3,也走到Segment.put方法,因为7所存储的Segment和3、4不同,因此,不会阻塞在lock():
以上就是ConcurrentHashMap的工作机制,通过把整个Map分为N个Segment(类似HashTable),可以提供相同的线程安全,但是效率提升N倍,默认提升16倍。
文章引用:
http://blog.csdn.net/xuefeng0707/article/details/40834595
http://qifuguang.me/2015/09/10/[Java并发包学习八]深度剖析ConcurrentHashMap/