Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
Subscribe to see which companies asked this question
code:
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isSymmetric(TreeNode* root) { return !root || isSymmetric(root->left, root->right); } bool isSymmetric(TreeNode* left, TreeNode *right) { if(!left && !right) return true; // 递归基 if(!left || !right) return false; // 递归基 if(left->val != right->val) return false; // 递归基 return isSymmetric(left->left, right->right) && isSymmetric(left->right, right->left); } };