Problem A. Distance 求树中距离恰好为2的结点对的个数
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int edge[100007]; int main(){ int t; while(scanf("%d",&t)!=EOF){ for(int i = 1;i <= t; i++) edge[i] = 0; int u,v; for(int i =1 ;i < t; i++){ scanf("%d%d",&v,&u); edge[u]++; edge[v]++; } long long ans = 0; for(int i = 1;i <= t; i++){ ans += (1ll*edge[i]*edge[i]-edge[i])/2; } cout<<ans<<endl; } return 0; }
Problem B. Science
求长度为n只有01的字符串,包含01{k}0子串个数的期望
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct Node{ double max[107][107]; }; int k; Node operator *(Node a,Node b){ Node c; memset(c.max,0,sizeof(c.max)); for(int i = 0;i <= k + 2; i++){ for(int j = 0;j <= k+2; j++){ for(int l = 0;l <= k+2; l++){ c.max[i][j] += a.max[i][l]*b.max[l][j]; } } } return c; } Node x,y,z; int main(){ long long n; while(cin>>n>>k){ memset(x.max,0,sizeof(x.max)); for(int i = 0;i <= k+2 ;i++) x.max[i][i] = 1.0; memset(y.max,0,sizeof(y.max)); for(int i = 0;i <= k; i++) y.max[0][i] = 0.5; for(int i = 1;i <= k+1; i++) y.max[i][i-1] = 0.5; y.max[0][k+1] = 0.5; y.max[k+1][k+1] = 0.5; y.max[k+2][k] = 0.5; y.max[k+2][k+2] = 1.0; n--; while(n){ if(n&1) x = x*y; y = y * y; n /= 2; } double ans = x.max[k+2][0]*0.5 + x.max[k+2][k+1]*0.5; printf("%0.16f\n",ans); } return 0; }
求有几个区间,在这个区间中存在两个数,差值为d
#include<iostream> #include<cstring> #include<algorithm> #include<set> #include<map> #include<cstdio> #define ll long long using namespace std; map<ll,int> haha; int main(){ int n,d; while(scanf("%d%d",&n,&d)!=EOF){ haha.clear(); int be = 0; haha[0] = 0; ll sum = 0,u; ll ans = 0; for(int i = 1;i <= n; i++){ scanf("%I64d",&u); if(haha.find(u-d)!= haha.end()) be = max(be,haha[u-d]); if(haha.find(u+d) != haha.end()) be = max(be,haha[u+d]); ans += be; haha[u] = i; } cout<<ans<<endl; } return 0; }
F. Weird Game
对于长度为N的一维格子,每次可以从中选出恰好长度为L,且不包含被染色位置的格子。
如果找不到可以染色的区间了。算输。
sg函数 对于可以选择长度为L进行染色,算出 格子长度为1-7000的sg函数。
由于对于一个N,要枚举分出的两个线段长度,需要N的转移,所以是N*N的复杂度,会超时。
打表找规律,发现大于8的L的必败态有固定的增长速度。于是,打表。
小于8的就直接sg函数做了就行。
#include<cstdio> #include<cstring> #include<algorithm> #include<bitset> #include<iostream> #include<set> using namespace std; int check[7000]; int sg[7000]; set<int> haha[70001]; int change[14][2]={ 2,0, 2,0, 4,-2, 4,-2, 4,0, 4,-2, 8,-2, 4,-2, 8,0, 8,-2, 16,-6, 4,0 }; int main(){ int cnt = 1; for(int i = 2;i <= 7;i++){ memset(sg,0,sizeof(sg)); for(int j = i; j <= 7000; j++){ int u = j - i; for(int k = 0;k + k <= u; k++){ check[sg[k]^sg[u-k]] = cnt; } for(int k = 0;;k++){ if(check[k] != cnt){ sg[j] = k; break; } } cnt++; } int f = 0; for(int j = i;j <= 7000; j++){ if(sg[j] == 0){ haha[i].insert(j); } } } for(int i = 8; i<=7000;i++){ int j = i -1; for(int l = 0;l < 12; l++){ j = j + change[l][0]*i+change[l][1]; if(j > 7000) break; haha[i].insert(j); } } int n; while(scanf("%d",&n)!=EOF){ if(n % 2 == 0) printf("S"); else printf("F"); for(int i = 2;i <= n; i++){ if(haha[i].find(n) != haha[i].end()) printf("S"); else printf("F"); } printf("\n"); } return 0; }