题目链接:http://poj.org/problem?id=3525
题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。
思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; const double eps = 1e-10; const int maxn = 105; int dq[maxn], top, bot, pn, order[maxn], ln; struct Point { double x, y; } p[maxn]; struct Line { Point a, b; double angle; } l[maxn], tmp[maxn]; int dblcmp(double k) { if (fabs(k) < eps) return 0; return k > 0 ? 1 : -1; } double multi(Point p0, Point p1, Point p2) { return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x); } bool cmp(int u, int v) { int d = dblcmp(l[u].angle-l[v].angle); if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > 0; return d < 0; } void getIntersect(Line l1, Line l2, Point& p) { double dot1,dot2; dot1 = multi(l2.a, l1.b, l1.a); dot2 = multi(l1.b, l2.b, l1.a); p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1); p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1); } bool judge(Line l0, Line l1, Line l2) { Point p; getIntersect(l1, l2, p); return dblcmp(multi(p, l0.a, l0.b)) < 0; } void addLine(double x1, double y1, double x2, double y2) { l[ln].a.x = x1; l[ln].a.y = y1; l[ln].b.x = x2; l[ln].b.y = y2; l[ln].angle = atan2(y2-y1, x2-x1); ln++; } bool halfPlaneIntersection(Line l[], int n) { int i, j; for (i = 0; i < n; i++) order[i] = i; sort(order, order+n, cmp); for (i = 1, j = 0; i < n; i++) if (dblcmp(l[order[i]].angle-l[order[j]].angle) > 0) order[++j] = order[i]; n = j + 1; dq[0] = order[0]; dq[1] = order[1]; bot = 0; top = 1; for (i = 2; i < n; i++) { while (bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]])) top--; while (bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]])) bot++; dq[++top] = order[i]; } while (bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--; while (bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++; if (bot + 1 >= top) return false; //当dq中少于等于两条边时,说明半平面无交集 return true; } double getDis(Point a, Point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } void changePolygon(double h) { double len, dx, dy; for (int i = 0; i < ln; i++) { len = getDis(l[i].a, l[i].b); dx = (l[i].a.y - l[i].b.y) / len * h; dy = (l[i].b.x - l[i].a.x) / len * h; tmp[i].a.x = l[i].a.x + dx; tmp[i].a.y = l[i].a.y + dy; tmp[i].b.x = l[i].b.x + dx; tmp[i].b.y = l[i].b.y + dy; tmp[i].angle = l[i].angle; } } double BSearch() { double l = 0, r = 20000, mid; while (l + eps < r) { mid = (l + r) / 2; changePolygon(mid); if (halfPlaneIntersection(tmp, ln)) l = mid; else r = mid; } return l; } int main() { int i; while (scanf ("%d", &pn) && pn) { for (i = 0; i < pn; i++) scanf ("%lf%lf", &p[i].x, &p[i].y); for (i = ln = 0; i < pn-1; i++) addLine(p[i].x, p[i].y, p[i+1].x, p[i+1].y); addLine(p[i].x, p[i].y, p[0].x, p[0].y); printf ("%.6lf\n", BSearch()); } return 0; }