算法导论—最长公共子序列

华电北风吹
日期:2016/2/24

问题描述:
给定两个序列 X=(x1,x2,...,xm) Y=(y1,y2,...,yn) ,求 X Y 的长度最长的公共子序列。
子序列:给定一个序列 X=(x1,x2,...,xm) ,若另一个序列 Z=(z1,z2,...,zk) 满足存在一个严格递增的下标序列 i1,i2,...,ik 使得对所有的 j=1,2,...,k 满足 xij=zj ,就称 Z X 的子序列。

问题解析:
动态规划法图示
算法导论—最长公共子序列_第1张图片

参考代码:

#include <string>
#include <iostream>
#include <vector>
using namespace std;

class Solution
{
public:
    vector<string> LongestCommanSubArray(string str1,string str2)
    {
        int m = str1.length();
        int n = str2.length();
        vector< vector<int>> c(m + 1, vector<int>(n + 1)), b(m + 1, vector<int>(n + 1));
        for (int i = 0; i < m; i++)
        {
            for (int j = 0; j < n; j++)
            {
                if (str1[i] == str2[j])
                {
                    c[i + 1][j + 1] = c[i][j] + 1;
                    b[i + 1][j + 1] = 0;
                }
                else
                {
                    if (c[i][j + 1] >= c[i + 1][j])
                    {
                        c[i + 1][j + 1] = c[i][j + 1];
                        b[i + 1][j + 1] = 1;
                    }
                    else
                    {
                        c[i + 1][j + 1] = c[i + 1][j];
                        b[i + 1][j + 1] = 2;
                    }
                }
            }
        }
        vector<string> result;
        for (int k = n; k > 0; k--)
        {
            if (c[m][k] == c[m][n])
            {
                string subresult = "";
                int i = m, j = k;
                while ((i > 0) && (j > 0))
                {
                    switch (b[i][j])
                    {
                    case 0:
                        subresult.append(1, str1[i - 1]);
                        i--; j--;
                        break;
                    case 1:
                        i--;
                        break;
                    case 2:
                        j--;
                        break;
                    default:
                        break;
                    }
                }
                reverse(subresult.begin(), subresult.end());
                result.push_back(subresult);
            }
        }
        return result;
    }
};

int main(int argc, _TCHAR* argv[])
{
    Solution s;
    string s1 = "ABCBDAB", s2 = "BDCABA";
    vector<string> result = s.LongestCommanSubArray(s1, s2);
    for (auto i : result)
        cout << i << endl;

    for each (auto i in result)
    {
        cout << i << endl;
    }
    getchar();
    return 0;
}

你可能感兴趣的:(算法导论—最长公共子序列)