android graphic(6)—surfaceflinger和MessageQueue

  • MessageQueue等待消息
  • epoll监听fd
  • pipe fd导致epoll_wait返回
  • BitTube fd导致epoll_wait返回

MessageQueue(简称为MQ)是surfaceflinger(简称为SF)主线程中消息处理的“管家”,所有子线程要和主线程打交道都需要通过MQ,例如发送消息,发送Vsync信号等,这里主要分析MQ具体的实现流程。
下面这幅图是MQ处理消息的一个大概流程,下面根据其中的内容展开(黄色部分表示类名,绿色为类成员),MQ主要处理两类事件,一种是Message,一种是Event(Vsync),如图中的①②所示,图中epoll_wait()下的P表示pipe描述符,B表示BitTube描述符。

MessageQueue等待消息

在前面分析过,SF进程其实核心就是个接收消息,然后处理的过程。在SF启动过程中,最后会去执行run()函数,是个while循环,一直在等待事件的到来waitForEvent()


void SurfaceFlinger::run() {
    do {
        waitForEvent();
    } while (true);
}

进而去调用MQ的waitMessage(),“大管家”直接出场,其核心也是个while循环,处理函数为mLooper->pollOnce(-1)

void MessageQueue::waitMessage() {
    do {
        IPCThreadState::self()->flushCommands();
        int32_t ret = mLooper->pollOnce(-1);
        switch (ret) {
            case ALOOPER_POLL_WAKE:
            case ALOOPER_POLL_CALLBACK:
                continue;
            case ALOOPER_POLL_ERROR:
                ALOGE("ALOOPER_POLL_ERROR");
            case ALOOPER_POLL_TIMEOUT:
                // timeout (should not happen)
                continue;
            default:
                // should not happen
                ALOGE("Looper::pollOnce() returned unknown status %d", ret);
                continue;
        }
    } while (true);
}

而pollOnce(),会去调用pollInner(),

int Looper::pollInner(int timeoutMillis) {

    // Poll.
    //poll之前先把mResponses清空
    int result = ALOOPER_POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mIdling = true;

    //通过epoll_wait等到事件的到来,监听了哪些描述符,需要去找epoll_ctl()
    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    //事件到来
    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        //分两类事件
        //第一种为消息
        if (fd == mWakeReadPipeFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake read pipe.", epollEvents);
            }
        } else {
            //第二种为Vsync信号
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= ALOOPER_EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;

     //处理消息
    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes. Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = ALOOPER_POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    //处理Vsync信号
    // Invoke all response callbacks.
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == ALOOPER_POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd);
            }
            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = ALOOPER_POLL_CALLBACK;
        }
    }
    return result;
}

从上面的代码可以看出,epoll_wait()等待了两类信号的到来,一种是message,一种是Vsync event,那么肯定是epoll监听了两个描述符,那么都是在哪里添加的呢?

epoll监听fd

首先在Looper的构造函数中,创建了图中所示的两个描述符mWakeReadPipeFd ,mWakeWritePipeFd 分别对应pipe的读和写,并且将读描述符mWakeReadPipeFd通过epoll_ctl添加到监听的描述符中。这个描述符所对应的是Message消息。

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    int wakeFds[2];
    //创建一个管道,一个写东西另外一个就有东西读了,
    int result = pipe(wakeFds);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);

    mWakeReadPipeFd = wakeFds[0];
    mWakeWritePipeFd = wakeFds[1];

    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
            errno);

    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
            errno);

    mIdling = false;

    // Allocate the epoll instance and register the wake pipe.
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeReadPipeFd;
    //监听
    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
            errno);
}

其次在Looper的setEventThread()函数中,epoll注册了另外一个描述符,这个描述符是对应BitTube mEventTube中的读描述符,而对应的写描述符在EventThread的mDisplayEventConnections中。

void MessageQueue::setEventThread(const sp<EventThread>& eventThread)
{
    mEventThread = eventThread;
    //首先创建一个完整的Connection,里面的BitTube中读写描述符都在
    mEvents = eventThread->createEventConnection();
    //重建一个Connection,里面包含了mEvents的读描述符
    mEventTube = mEvents->getDataChannel();
    //把读描述符注册到epoll监听
    mLooper->addFd(mEventTube->getFd(), 0, ALOOPER_EVENT_INPUT,
            MessageQueue::cb_eventReceiver, this);
}
int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {

    int epollEvents = 0;
    if (events & ALOOPER_EVENT_INPUT) epollEvents |= EPOLLIN;
    if (events & ALOOPER_EVENT_OUTPUT) epollEvents |= EPOLLOUT;

    { // acquire lock
        AutoMutex _l(mLock);

    //首先把要监听的fd,回调函数等构建一个Request 
        Request request;
        request.fd = fd;
        request.ident = ident;
        request.callback = callback;
        request.data = data;

        struct epoll_event eventItem;
        memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
        eventItem.events = epollEvents;
        eventItem.data.fd = fd;

        ssize_t requestIndex = mRequests.indexOfKey(fd);
        if (requestIndex < 0) {
             //监听描述符
            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
            if (epollResult < 0) {
                ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno);
                return -1;
            }
            //将request放到键值对mRequests中
            mRequests.add(fd, request);
        } else {
            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);
            if (epollResult < 0) {
                ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno);
                return -1;
            }
            mRequests.replaceValueAt(requestIndex, request);
        }
    } // release lock
    return 1;
}

pipe fd导致epoll_wait返回

上面注册了pipe和BitTube的读描述符,那么当这两个对应的写描述符有写操作时,epoll_wait()就会返回,然后进行消息的处理。首先分析pipe对应的写描述符的激活,一般给SF发消息(只分析异步消息),都是去调用SF的postMessageAsync()函数,这个函数的入参是MessageBase类,所以给SF发消息首先会对消息进行封装,封装为MessageBase的子类,前面介绍过。

status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
        nsecs_t reltime, uint32_t flags) {
    return mEventQueue.postMessage(msg, reltime);
}

最终回去调用Looper的sendMessageAtTime,

void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler,
        const Message& message) {
#if DEBUG_CALLBACKS
    ALOGD("%p ~ sendMessageAtTime - uptime=%lld, handler=%p, what=%d",
            this, uptime, handler.get(), message.what);
#endif

    size_t i = 0;
    { // acquire lock
        AutoMutex _l(mLock);

        //有个保存所有消息的Vector,
        //如果mMessageEnvelopes这里面没有消息,则i=0
        //mMessageEnvelopes中的消息按触发时间的先后顺序排列
        size_t messageCount = mMessageEnvelopes.size();
        while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {
            i += 1;
        }
    //处理的消息都被封装为MessageEnvelope,
        MessageEnvelope messageEnvelope(uptime, handler, message);
        mMessageEnvelopes.insertAt(messageEnvelope, i, 1);

        // Optimization: If the Looper is currently sending a message, then we can skip
        // the call to wake() because the next thing the Looper will do after processing
        // messages is to decide when the next wakeup time should be. In fact, it does
        // not even matter whether this code is running on the Looper thread.
        if (mSendingMessage) {
            return;
        }
    } // release lock

    // Wake the poll loop only when we enqueue a new message at the head.
    // 如果i=0,则去调用wake(),
    // 只有我们把这个消息插入到MessageEnvelope头部时,才会去激活epoll_wait()返回处理消息
    if (i == 0) {
        wake();
    }
}

在weak()函数中我们看到有写mWakeWritePipeFd的操作,进而会导致epoll_wait返回。从上面的代码能够看到并不是每来一个消息都会去马上处理,mMessageEnvelopes中的消息按触发时间的先后顺序排列,如果我们插入到头部,表明新加入的这个消息是需要最近处理的,mMessageEnvelopes中后面还有其他待处理的消息,这时候才会去激活epoll_wait()返回,这种处理方式主要是出于效率的考虑,一次处理的消息不能太多也不能太少。

void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif

    ssize_t nWrite;
    do {
        nWrite = write(mWakeWritePipeFd, "W", 1);
    } while (nWrite == -1 && errno == EINTR);

    if (nWrite != 1) {
        if (errno != EAGAIN) {
            ALOGW("Could not write wake signal, errno=%d", errno);
        }
    }
}

BitTube fd导致epoll_wait返回

当Vsync信号的到来时,EventThread从睡眠中打断,调用Connection的postEvent函数,这个Connection里面保存了BitTube的写描述符。

bool EventThread::threadLoop() {
    DisplayEventReceiver::Event event;
    Vector< sp<EventThread::Connection> > signalConnections;
    signalConnections = waitForEvent(&event);

    //vsync信号到来,睡醒了
    // dispatch events to listeners...
    const size_t count = signalConnections.size();
    for (size_t i=0 ; i<count ; i++) {
        const sp<Connection>& conn(signalConnections[i]);
        // now see if we still need to report this event
        //调用Connection的postEvent函数,这个Connection里面保存了BitTube的写描述符
        status_t err = conn->postEvent(event);

    }
    return true;
}

进而会往BitTube的写描述符中写东西,对应对端的读描述符被激活,epoll_wait()激活。

status_t EventThread::Connection::postEvent(
        const DisplayEventReceiver::Event& event) {
    ssize_t size = DisplayEventReceiver::sendEvents(mChannel, &event, 1);
    return size < 0 ? status_t(size) : status_t(NO_ERROR);
}

你可能感兴趣的:(android graphic(6)—surfaceflinger和MessageQueue)