【bzoj1858】序列操作 线段树打标记

       一道比较繁琐的线段树lazy tag(我写了2.9k应该算比较短的了)。由于有取反操作的存在,事实上我们需要维护下列东西:

       1.1的个数;

       2.从头开始1的连续的个数;

       3.从尾开始1的连续的个数(2、3两个是为了维护连续最大值而存在的);

       4.最大的连续的1的个数;

同理,还需要维护:

       5.从头开始0的连续的个数;

       6.从尾开始0的连续的个数;

       7.最大的连续的0的个数;

       然后注意一下细节写的小心一点就行了,比较关键的就是连续的1(0)的个数。注意除了能由左孩子的3和有孩子的2合并的到以外,还可以通过继承两个子节点的连续的1的个数得到。维护2的时候要小心左孩子都是1的情形,3,5,6同理。

AC代码如下(我真佩服我自己没有超过100行):

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 400005
using namespace std;

int n,m,sum[N],c[N][2],val[N],tun[N]; struct node{ int x,y,z; }f[N][2];
int read(){
	int x=0; char ch=getchar();
	while (ch<'0' || ch>'9') ch=getchar();
	while (ch>='0' && ch<='9'){ x=x*10+ch-'0'; ch=getchar(); }
	return x;
}
void maintain(int k){
	int l=c[k][0],r=c[k][1],mid=(l+r)>>1,i;
	sum[k]=sum[k<<1]+sum[k<<1|1];
	for (i=0; i<2; i++){
		if (sum[k<<1]==(mid-l+1)*i) f[k][i].x=mid-l+1+f[k<<1|1][i].x; else f[k][i].x=f[k<<1][i].x;
		if (sum[k<<1|1]==(r-mid)*i) f[k][i].y=r-mid+f[k<<1][i].y; else f[k][i].y=f[k<<1|1][i].y;
		f[k][i].z=max(max(f[k<<1][i].z,f[k<<1|1][i].z),f[k<<1][i].y+f[k<<1|1][i].x);
	}
}
void paint(int k,int u){
	int l=c[k][0],r=c[k][1],v=!u;
	f[k][u].x=f[k][u].y=f[k][u].z=r-l+1;
	f[k][v].x=f[k][v].y=f[k][v].z=0;
	sum[k]=u*(r-l+1); val[k]=u; tun[k]=0;
}
void rever(int k){
	if (val[k]!=-1) paint(k,!val[k]); else{
		swap(f[k][0],f[k][1]); tun[k]^=1;
		sum[k]=c[k][1]-c[k][0]+1-sum[k];
	}
}
void pushdown(int k){
	if (val[k]!=-1){
		paint(k<<1,val[k]); paint(k<<1|1,val[k]); val[k]=-1;
	}
	if (tun[k]){
		rever(k<<1); rever(k<<1|1); tun[k]=0;
	}
}
void build(int k,int x,int y){
	c[k][0]=x; c[k][1]=y; val[k]=-1;
	if (x==y){
		sum[k]=read();
		if (sum[k]){ f[k][1].x=f[k][1].y=f[k][1].z=1; }
		else{ f[k][0].x=f[k][0].y=f[k][0].z=1; }
		return;
	}
	int mid=(x+y)>>1;
	build(k<<1,x,mid); build(k<<1|1,mid+1,y); maintain(k);
}
void ins(int k,int x,int y,int t){
	int l=c[k][0],r=c[k][1],mid=(l+r)>>1;
	if (x==l && y==r){
		if (t<2) paint(k,t); else rever(k);	return;
	}
	pushdown(k);
	if (y<=mid) ins(k<<1,x,y,t); else
	if (x>mid) ins(k<<1|1,x,y,t); else{
		ins(k<<1,x,mid,t); ins(k<<1|1,mid+1,y,t);
	}
	maintain(k);
}
int getsum(int k,int x,int y){
	int l=c[k][0],r=c[k][1],mid=(l+r)>>1;
	if (x==l && y==r) return sum[k];
	pushdown(k);
	if (y<=mid) return getsum(k<<1,x,y); else
	if (x>mid) return getsum(k<<1|1,x,y); else
		return getsum(k<<1,x,mid)+getsum(k<<1|1,mid+1,y);
}
node getlen(int k,int x,int y){
	int l=c[k][0],r=c[k][1],mid=(l+r)>>1;
	if (x==l && y==r) return f[k][1];
	pushdown(k);
	if (y<=mid) return getlen(k<<1,x,y); else
	if (x>mid) return getlen(k<<1|1,x,y); else{
		node t1=getlen(k<<1,x,mid),t2=getlen(k<<1|1,mid+1,y),t3;
		if (t1.x==mid-l+1) t3.x=t1.x+t2.x; else t3.x=t1.x;
		if (t2.y==r-mid) t3.y=t1.y+t2.y; else t3.y=t2.y;
		t3.z=max(max(t1.z,t2.z),t1.y+t2.x); 
		return t3;
	}
}
int main(){
	n=read(); m=read(); build(1,1,n);
	while (m--){
		int t=read(),x=read()+1,y=read()+1;
		if (t<3) ins(1,x,y,t); else
		if (t<4) printf("%d\n",getsum(1,x,y)); else printf("%d\n",getlen(1,x,y).z);
	}
	return 0;
}

by lych

2016.1.9


你可能感兴趣的:(线段树,tag,lazy)