void insert_heap(int a[], int i){ while(i>0){ int j=(i-1)/2; if(a[i] < a[j]){ swap(a[i], a[j]); i=j; } else break; } }
void sift_heap(int a[], int i){ // j 是 i 的左孩子 int j=2*i+1; int n = strlen(a); while(j<n){ if(j<n-1 && a[j]<a[j+1]) ++j; if(a[i]<a[j]){ swap(a[i],a[j]); i=j; j=2*i+1; } else break; } } void build_heap(int a[], int n){ int i=n/2; //循环完后,就建立了一个最大堆 for(; i>=0; ++i){ sift_heap(a, i); } }
template <class RandomAccessIterator, class Compare> inline void push_heap(RandomAccessIterator first, RandomAccessIterator last){ __push_heap_aux(first, last, distance_type(first), value_type(first)); } template <class RandomAccessIterator, class Distance, class T> inline void __push_heap_aux(RandomAccessIterator first, RandomAccessIterator last, Distance*, T*) { __push_heap(first, Distance((last - first) - 1), Distance(0), T(*(last - 1))); } template <class RandomAccessIterator, class Distance, class T> void __push_heap(RandomAccessIterator first, Distance holeIndex, Distance topIndex, T value) { Distance parent = (holeIndex - 1) / 2; while (holeIndex > topIndex && *(first + parent) < value) { *(first + holeIndex) = *(first + parent); holeIndex = parent; parent = (holeIndex - 1) / 2; } *(first + holeIndex) = value; }可以看到push_heap算法最终调用的是__push_heap,算法内部都用的是迭代器,first是指向堆顶的迭代器,holeIndex指的新插入元素位置距离堆顶的距离,first+topIndex是该堆顶的位置,topIndex是距离, value是新插入的元素的值。
template <class RandomAccessIterator, class Distance, class T> void __adjust_heap(RandomAccessIterator first, Distance holeIndex, Distance len, T value) { Distance topIndex = holeIndex; Distance secondChild = 2 * holeIndex + 2; //得到右孩子节点 while (secondChild < len) { if (*(first + secondChild) < *(first + (secondChild - 1))) //选择左右孩子中的较大节点 secondChild--; *(first + holeIndex) = *(first + secondChild); holeIndex = secondChild; secondChild = 2 * (secondChild + 1); } if (secondChild == len) { *(first + holeIndex) = *(first + (secondChild - 1)); holeIndex = secondChild - 1; } //此时没有满足整个堆的性质,需要再从下往上调整一次 __push_heap(first, holeIndex, topIndex, value); }通过将该算法和介绍的第二个算法相比,可知这个算法就是筛选法。
template <class RandomAccessIterator> inline void pop_heap(RandomAccessIterator first, RandomAccessIterator last) { __pop_heap_aux(first, last, value_type(first)); } template <class RandomAccessIterator, class T> inline void __pop_heap_aux(RandomAccessIterator first, RandomAccessIterator last, T*) { __pop_heap(first, last - 1, last - 1, T(*(last - 1)), distance_type(first)); } template <class RandomAccessIterator, class T, class Distance> inline void __pop_heap(RandomAccessIterator first, RandomAccessIterator last, RandomAccessIterator result, T value, Distance*) { *result = *first; __adjust_heap(first, Distance(0), Distance(last - first), value); }可以看出pop_heap最后调用的是__adjust_heap。
template <class RandomAccessIterator> void sort_heap(RandomAccessIterator first, RandomAccessIterator last) { while (last - first > 1) pop_heap(first, last--); }
template <class RandomAccessIterator, class Compare> inline void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp) { __make_heap(first, last, comp, value_type(first), distance_type(first)); } template <class RandomAccessIterator, class Compare, class T, class Distance> void __make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp, T*, Distance*) { if (last - first < 2) return; // 长度为0或1,就返回; Distance len = last - first; //找到第一个调整的节点 Distance parent = (len - 2)/2; while (true) { __adjust_heap(first, parent, len, T(*(first + parent)), comp); if (parent == 0) return; parent--; } }可以看见,该算法是从len/2开始调整,一直到parent为0,这就是我在上面第一部分的筛选法时候举的例子。
注: 以上所列出的STL算法均为SGI STL并且,列出的均为不能只能排序规则的一组。
三、STL中堆的应用
虽然stl中没有提供堆这个数据结构,但是priority queue的内部确是由堆来实现的。priority queue允许用户以任何次序将任何元素推入容器内,但取出的时候一定是从优先权最高的元素开始取。binary heap正好具有这样的特性。为了平衡各个操作的时间复杂度和实现的复杂度,binary heap适合作为priority queue的底层机制。下面贴一个priority_queue的完整实现代码,请注意在几个构造函数中都使用了make_heap算法,在push函数中使用了push_heap算法,在pop中使用了pop_heap算法:
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES template <class T, class Sequence = vector<T>, class Compare = less<typename Sequence::value_type> > #else template <class T, class Sequence, class Compare> #endif class priority_queue { public: typedef typename Sequence::value_type value_type; typedef typename Sequence::size_type size_type; typedef typename Sequence::reference reference; typedef typename Sequence::const_reference const_reference; protected: Sequence c; Compare comp; public: priority_queue() : c() {} explicit priority_queue(const Compare& x) : c(), comp(x) {} #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> priority_queue(InputIterator first, InputIterator last, const Compare& x) : c(first, last), comp(x) { make_heap(c.begin(), c.end(), comp); } template <class InputIterator> priority_queue(InputIterator first, InputIterator last) : c(first, last) { make_heap(c.begin(), c.end(), comp); } #else /* __STL_MEMBER_TEMPLATES */ priority_queue(const value_type* first, const value_type* last, const Compare& x) : c(first, last), comp(x) { make_heap(c.begin(), c.end(), comp); } priority_queue(const value_type* first, const value_type* last) : c(first, last) { make_heap(c.begin(), c.end(), comp); } #endif /* __STL_MEMBER_TEMPLATES */ bool empty() const { return c.empty(); } size_type size() const { return c.size(); } const_reference top() const { return c.front(); } void push(const value_type& x) { __STL_TRY { c.push_back(x); push_heap(c.begin(), c.end(), comp); } __STL_UNWIND(c.clear()); } void pop() { __STL_TRY { pop_heap(c.begin(), c.end(), comp); c.pop_back(); } __STL_UNWIND(c.clear()); } }; // no equality is provided __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_QUEUE_H */
(转载文章请注明出处: http://blog.csdn.net/swagle/article/details/24330605 )