- 10个基于Python的计算机视觉实战项目
云博士的AI课堂
基于Python计算机视觉python计算机视觉机器视觉人工智能
10个基于Python的计算机视觉实战项目,涵盖多个领域和应用场景,每个项目均附有GitHub地址、概述、解决的问题及应用场景:1.PCV图像处理与计算机视觉库GitHub地址:jesolem/PCV概述:提供计算机视觉基础算法的Python实现,包括图像分割、直方图均衡化、图像增强等。解决的问题:简化图像处理流程,支持快速实现算法原型。应用场景:学术研究、教学实验、图像预处理任务。2.基于朴素贝
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- 使用Halcon进行图像预处理的策略
AI_Guru人工智能
计算机视觉图像处理人工智能
图像预处理是机器视觉系统中的一个关键步骤,它有助于提高图像质量,从而使得后续的图像分析和特征提取更加准确。在Halcon中,图像预处理通常包括滤波、对比度增强、归一化、边缘增强等操作。以下是一些使用Halcon进行图像预处理的策略,以及相应的示例代码。图像预处理策略滤波:去除图像噪声,如高斯滤波、中值滤波等。对比度增强:提高图像的对比度,如直方图均衡化、对比度限制自适应直方图均衡化(CLAHE)。
- erdas图像增强步骤_基于erdas的图像增强处理
weixin_39953618
erdas图像增强步骤
《基于erdas的图像增强处理》由会员分享,可在线阅读,更多相关《基于erdas的图像增强处理(9页珍藏版)》请在人人文库网上搜索。1、图像增强处理l实习目的:掌握常用的图像增强处理的方法l内容:空间、辐射、光谱增强处理的主要方法空间增强:包括卷积增强处理、纹理分析辐射增强:LUT拉伸处理、直方图均衡化处理光谱增强:主成份变换、缨穗变换、色彩变换图像增强处理包括空间、辐射、光谱增强处理,本练习做几
- 图像处理 | 基于matla的多尺度Retinex(MSR)和自适应直方图均衡化(CLAHE)算法联合的低照度图像增强(附代码)
单北斗SLAMer
图像处理算法人工智能低照度图像增强
低照度图像增强1、算法原理2、代码实现3、关键步骤说明4、效果5、扩展建议6、原图7、结果1、算法原理2、代码实现functionenhanced_img=MSR_CLAHE_Enhancement(img_path)%读取图像img=imread(img_path
- 图像处理精粹:直方图均衡化与平滑滤波解析
背景简介图像处理技术是计算机视觉和机器学习领域的基石之一。在处理数字图像时,我们常常需要对图像的某些属性进行调整,以达到预期的效果。本章节聚焦于图像的直方图均衡化和平滑滤波处理,这两种技术是提升图像质量和改善视觉体验的关键步骤。直方图均衡化直方图均衡化是一种提高图像全局对比度的方法,特别是在图像的背景和前景对比度较低的情况下。通过重新分布图像的灰度级,使得图像的灰度级均匀分布,从而增强图像的整体对
- 夜拍提升清晰度
不知几秋
opencv计算机视觉python
importcv2importmatplotlib.pyplotasplt#图像路径image_path='images/img01.jpg'#读取图像img=cv2.imread(image_path)#将图像转换为灰度图像gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#对灰度图像进行直方图均衡化equ_img=cv2.equalizeHist(gra
- 【图像处理入门】4. 图像增强技术——对比度与亮度的魔法调节
小米玄戒Andrew
图像处理:从入门到专家图像处理算法计算机视觉模式识别几何变换图像增强
摘要图像增强是改善图像视觉效果的核心技术。本文将详解两种基础增强方法:通过直方图均衡化拉伸对比度,以及利用伽马校正调整非线性亮度。结合OpenCV代码实战,学会处理灰度图与彩色图的不同增强策略,理解为何彩色图像需在YUV空间操作亮度通道,为后续滤波与边缘检测奠定预处理基础。一、图像增强:让模糊图像「重获新生」为什么需要图像增强?改善视觉效果:让低对比度图像更清晰(如老照片修复)提升后续处理效果:增
- OpenCV CUDA模块直方图计算------生成一组均匀分布的灰度级函数evenLevels()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数主要用于为直方图均衡化、CLAHE等图像处理算法生成一组等间距的灰度区间边界值(bins或levels),这些边界值可用于后续将图像划分为多个区域进行处理。函数原型voidcv::cuda::evenLevels(OutputArraylevels,intn
- opencv彩图-直方图均衡化
瓦力wow
pythonopencv
效果如下#彩色图像靓图通道直方图均衡化处理importcv2im=cv2.imread("../img_data/sunrise.jpg")#读取彩图cv2.imshow("im",im)#BGR转YUV(Y通道即为亮度通道)im_yuv=cv2.cvtColor(im,#要转换的原图数据bgr通道格式cv2.COLOR_BGR2YUV)#转换方式#取出Y(亮度通道),执行均衡化处理,处理结果覆盖
- 【图像处理基石】OpenCV中都有哪些图像增强的工具?
AndrewHZ
图像处理基石图像处理opencv算法计算机视觉图像增强滤波颜色科学
OpenCV图像增强工具系统性介绍OpenCV提供了丰富的图像增强工具,主要分为以下几类:亮度与对比度调整线性变换(亮度/对比度调整)直方图均衡化自适应直方图均衡化(CLAHE)滤波与平滑高斯滤波中值滤波双边滤波锐化与边缘增强拉普拉斯算子高通滤波非锐化掩蔽(UnsharpMasking)色彩空间变换灰度转换HSV色彩调整颜色平衡高级增强技术伽马校正对数变换幂律变换下面是各种工具的优缺点对比表:工具
- OpenCV的CUDA模块进行图像处理
程序小K
目标检测opencv图像处理人工智能
本文介绍了使用OpenCV和CUDA加速的四种图像处理技术:灰度化、高斯模糊、Sobel边缘检测和直方图均衡化。每种技术都通过将图像数据上传到GPU,利用CUDA进行加速处理,最后将结果下载回CPU。灰度化通过cv::cuda::cvtColor实现,高斯模糊使用cv::cuda::createGaussianFilter创建滤波器,Sobel边缘检测通过cv::cuda::createSobel
- OpenCV:视觉智能的工业引擎与创新实践指南
Gupao123
opencv人工智能计算机视觉目标检测python深度学习图像处理
从医疗影像到自动驾驶,OpenCV持续驱动计算机视觉技术的产业落地。本文将深度解析OpenCV4.9核心技术栈,梳理从传统图像处理到神经渲染的演进路径,为开发者构建从算法原型到生产部署的全链路知识体系。一、认知重构:视觉计算的四维空间1.1图像处理核心范式处理维度经典算法OpenCV函数簇空域变换自适应直方图均衡cv2.createCLAHE()频域分析小波去噪cv2.dwt()几何校正鱼眼镜头标
- Opencv 直方图均衡化
小洋洋洋洋人
opencv
#include#include#include#include#includeusingnamespacestd;usingnamespacecv;/***创建灰度直方图*@paramsrcImg原始图像*@paramgrayHist灰度直方图*/voidcreateGrayHistogram(MatsrcImg,Mat&grayHist){/转换为灰度图像//cvtColor(srcImg,s
- OpenCV-Python实战(8)——直方图均衡化_python opencv 直方图均衡化
2401_84264244
程序员opencvpython人工智能
OpenCV-Python实战(8)——直方图均衡化0.前言1.灰度直方图均衡化2.颜色直方图均衡化3.对比度受限的自适应直方图均衡化4.比较CLAHE和直方图均衡化5.直方图的比较小结系列链接0.前言图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务。在本文中,将介绍如何使用OpenCV函数cv2.equalizeHist()执行直方图均衡
- 青少年编程与数学 02-016 Python数据结构与算法 28课题、图像处理算法
明月看潮生
编程与数学第02阶段青少年编程python图像处理编程与数学算法
青少年编程与数学02-016Python数据结构与算法28课题、图像处理算法一、图像增强与复原1.直方图均衡化2.对比度受限的自适应直方图均衡化(CLAHE)二、图像滤波与边缘检测1.高斯滤波2.Canny边缘检测三、图像分割与形态学操作1.形态学操作四、图像特征提取与几何变换1.SIFT特征提取2.仿射变换与透视变换五、图像压缩JPEG压缩课题摘要:本文是对一些常见图像处理算法的详解,包括原理、
- OpenCV图像增强实战教程:从理论到代码实现
Despacito0o
opencvopencv人工智能计算机视觉
OpenCV图像增强实战教程:从理论到代码实现想要掌握图像增强的核心技术?本文手把手教你使用OpenCV实现多种图像增强技术,从基础的线性变换到高级的频域滤波,全方位提升你的图像处理能力!适合初学者和进阶开发者!目录1.线性变换:调整图像亮度2.空间域滤波:均值滤波与中值滤波3.边缘检测:Sobel算子实现4.频域滤波:理想低通与高通滤波器5.高级应用:同态滤波处理光照不均6.直方图均衡化:提升图
- 直方图均衡化
红米煮粥
计算机视觉人工智能图像处理
直方图均衡化是一种在图像处理中广泛使用的技术,主要用于增强图像的对比度,特别是当图像的动态范围较小时。以下是对直方图均衡化的详细解释:一、定义直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。这种方法通过改变图像的直方图来改变图像中各像素的灰度,从而增强图像的对比度。二、作用与原理直方图均衡化的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行
- 毕设成品 opencv图像增强算法系统
m0_71572237
毕业设计python毕设
文章目录0简介1.基于直方图均衡化的图像增强2\.基于拉普拉斯算子的图像增强4\.基于伽马变换的图像增强软件实现效果最后0简介今天学长向大家分享一个毕业设计项目毕业设计opencv图像增强算法系统项目运行效果:毕业设计基于机器视觉的图像增强项目分享:见文末!1.基于直方图均衡化的图像增强直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- CV:图像的直方图均衡化
壹十壹
CVopencv计算机视觉人工智能
均衡化在图像处理中通常指的是直方图均衡化(HistogramEqualization),其主要目的是改善图像的对比度,使图像细节更加明显。以下是对直方图均衡化的详细说明:直方图均衡化原理直方图图像的直方图表示各灰度级在图像中出现的频率。对于对比度较低的图像,直方图可能集中在灰度范围的某一小区间。均衡化目标直方图均衡化通过将原图的灰度分布重新映射,使得输出图像的直方图尽量均匀分布在整个灰度范围内。这
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 基于OpenCV的道路损伤识别
Srlua小谢
传知代码论文复现python图形图像
✨✨欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。我是Srlua小谢,在这里我会分享我的知识和经验。希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。记得先点赞后阅读哦~所属专栏:传知代码论文复现欢迎访问我的主页:Srlua小谢获取更多信息和资源。✨✨目录一、背景介绍二、算法原理(一)中值滤波(二)直方图均衡化(三)调节阈值(
- C#调用OpenCvSharp实现图像的直方图均衡化
gc_2299
dotnet编程OpenCvSharp直方图均衡化
本文学习基于OpenCvSharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。直方图均衡化是一种图像处理方法,针对偏亮或偏暗的图像,通过调整图像的像素值来增强图像对比度,详细原理及介绍见参考文献1-4。 直方图均衡化第一步要将彩色图像转换为灰度图像,调用OpenCvSharp中的Cv2.CvtColor函数转换,主要代码及效果图如下所示:MatoriImage=Cv2.Im
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 如何使用 Opencv 实现人脸检测和人脸识别?
学习不断
1.人脸检测CascadeClassifier加载Opencv自带的人脸检测haarcascade_frontalface_alt.xml分类器。图像预处理cvtColor(灰度化)equalizeHist(直方图均衡化)。使用detectMultiScale函数进行识别。使用rectangle函数绘制找到的目标矩形框。在原图像上ROI截取彩色的人脸保存。2.人脸识别FaceRecognizerF
- OpenCV-42 直方图均匀化
一道秘制的小菜
OpenCVopencv人工智能计算机视觉python均值算法
目录一、直方图均匀化原理二、直方图均匀化在OpenCV中的运用一、直方图均匀化原理直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方图均衡化的方法来增强图像细节。原理计算累计直方图将累计直方图进行区间转换在累计直方图中,概率相近的原始值,会被处理为相同的值最初的像素点都在0-7之间,最后我们
- 医学图像增强——基于同态滤波方法(Matlab代码实现)
然哥爱编程
matlab图像处理开发语言
目录1概述2运行结果3参考文献4Matlab代码1概述医学图像增强——基于同态滤波方法(Matlab代码实现)目的:改善医学图像质量,使低对比度的图像得到增强。方法:利用Matlab,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。结果:用直方图均衡化和规定化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。直方图均衡化对于
- MATLAB环境下使用同态滤波方法进行医学图像增强
哥廷根数学学派2023
matlab计算机视觉开发语言算法图像处理机器学习
目前图像增强技术主要分为基于空间域和基于频率域2大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam