- 基于OpenCV的道路损伤识别
Srlua小谢
传知代码论文复现python图形图像
✨✨欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。我是Srlua小谢,在这里我会分享我的知识和经验。希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。记得先点赞后阅读哦~所属专栏:传知代码论文复现欢迎访问我的主页:Srlua小谢获取更多信息和资源。✨✨目录一、背景介绍二、算法原理(一)中值滤波(二)直方图均衡化(三)调节阈值(
- C#调用OpenCvSharp实现图像的直方图均衡化
gc_2299
dotnet编程OpenCvSharp直方图均衡化
本文学习基于OpenCvSharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。直方图均衡化是一种图像处理方法,针对偏亮或偏暗的图像,通过调整图像的像素值来增强图像对比度,详细原理及介绍见参考文献1-4。 直方图均衡化第一步要将彩色图像转换为灰度图像,调用OpenCvSharp中的Cv2.CvtColor函数转换,主要代码及效果图如下所示:MatoriImage=Cv2.Im
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 如何使用 Opencv 实现人脸检测和人脸识别?
学习不断
1.人脸检测CascadeClassifier加载Opencv自带的人脸检测haarcascade_frontalface_alt.xml分类器。图像预处理cvtColor(灰度化)equalizeHist(直方图均衡化)。使用detectMultiScale函数进行识别。使用rectangle函数绘制找到的目标矩形框。在原图像上ROI截取彩色的人脸保存。2.人脸识别FaceRecognizerF
- OpenCV-42 直方图均匀化
一道秘制的小菜
OpenCVopencv人工智能计算机视觉python均值算法
目录一、直方图均匀化原理二、直方图均匀化在OpenCV中的运用一、直方图均匀化原理直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方图均衡化的方法来增强图像细节。原理计算累计直方图将累计直方图进行区间转换在累计直方图中,概率相近的原始值,会被处理为相同的值最初的像素点都在0-7之间,最后我们
- 医学图像增强——基于同态滤波方法(Matlab代码实现)
然哥爱编程
matlab图像处理开发语言
目录1概述2运行结果3参考文献4Matlab代码1概述医学图像增强——基于同态滤波方法(Matlab代码实现)目的:改善医学图像质量,使低对比度的图像得到增强。方法:利用Matlab,采用灰度直方图均衡化和灰度直方图规定化的方法对一幅X线图像进行增强处理,并比较它们的增强效果。结果:用直方图均衡化和规定化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。直方图均衡化对于
- MATLAB环境下使用同态滤波方法进行医学图像增强
哥廷根数学学派2023
matlab计算机视觉开发语言算法图像处理机器学习
目前图像增强技术主要分为基于空间域和基于频率域2大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- MATLAB环境下基于同态滤波方法的医学图像增强
哥廷根数学学派
信号处理图像处理深度学习matlab算法计算机视觉图像处理信号处理
目前图像增强技术主要分为基于空间域和基于频率域两大方面,基于空间域图像增强的方法包括了直方图均衡化方法和Retinex方法等,基于频率域的方法包括同态滤波方法。其中直方图均衡化方法只是根据图像的灰度概率分布函数进行简单的全局拉伸,没有考虑像素间的灰度联系情况,进行直方图均衡化后,会在一定程度上提高图像的对比度,但是图像的灰度级会进行合并进而减少,造成细节的丢失。而Retinex方法假定空间照度是缓
- 直方图均衡化原理与代码实现
SimpleLearing
opencv人工智能计算机视觉
1.简介直方图均衡化是一种用于增强图像对比度的图像处理技术。通过调整图像的灰度级别分布,直方图均衡化能够使图像中的像素值更加均匀分布,从而增强图像的细节和对比度。2.原理直方图均衡化的原理是通过调整图像的累积分布函数(CDF)来拉伸图像的灰度级别范围。这样可以使得图像的像素值在整个灰度范围内更均匀地分布。3.实现步骤以下是直方图均衡化的基本实现步骤:3.1生成直方图首先,计算原始图像的直方图,获取
- 玩转直方图处理之直方图均衡化、规定化
LiBiscuit
冒泡....双十一刚过~购物狂欢完还是要收心学习鸭!今天来说一说直方图。直方图定义:直方图是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像元的个数。以横轴表示灰度级,以纵轴表示每一灰度级具有的像元数或该像元数占总像元数的比例值,做出的条形统计图即为灰度直方图。如以下:直方图示例.
- 14- OpenCV:像素重映射和直方图相关处理
Ivy_belief
OpenCVopencv人工智能计算机视觉
目录一、像素重映射1、像素重映射的含义2、应用场景3、相关的API(例子演示)二、直方图1、直方图的介绍2、直方图均衡化3、直方图计算4、直方图比较5、直方图反向投影一、像素重映射1、像素重映射的含义像素重映射(PixelRemapping)是一种图像处理技术,用于将图像从一个坐标系统映射到另一个坐标系统。它通常用于校正图像中的几何畸变或调整图像的大小和分辨率。在像素重映射中,每个像素的位置会被重
- 深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化
Laney_Midory
深度学习笔记windows深度学习python直方图均衡化
深度学习很重要的预处理步骤就是需要对做直方图均衡化其中主要分成灰度图以及RGB图的直方图均衡化这俩的方法和代码不同想要去看具体原理的朋友可以查看下面这篇博客的内容写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html)我们这个场景中会用到的就是颜色直方图均衡化了其中包含三种方法方法1.在BGR颜色空间下进行直方图均衡化,可以分别对每个
- 自适应均衡化图片
zhuyua
opencv图像处理深度学习python
引入调用opencv自带的函数进行分块的均衡化好处:不会损失图像细节代码介绍核心代码:创建CLAHE对象cv2.createCLAHE(clipLimit,tileGridSize)clipLimit:颜色对比度的阈值,可选项,默认值8titleGridSize:局部直方图均衡化的模板(邻域)大小,可选项,默认值(8,8)调用我们自定义的CLAHE对象clahe.apply(src)src:处理的
- opencv#25 直方图均衡化
许嘘嘘
计算机视觉图像处理人工智能
本节将介绍如何根据图像的直方图对图像的亮度进行调整。也就是均衡化。通过图像直方图,我们可以判断图像是否过暗或过亮,当图像直方图过多的集中在灰度值较小的区域时,那么它所表示的是图像存在过暗的情况,反之过亮。就会导致图像中的纹理信息没办法很好的显示。像素距离拉伸例如我想拉大较小值的灰度值区域,那么我们可以将较小值的灰度值区域斜率调大(改变x与y的映射关系,比如幂函数的形式)。equalizeHist(
- 数字图像处理期末速成笔记
我先去打把游戏先
笔记计算机视觉人工智能
目录一、基础知识二、相邻像素间基本关系三、图像增强方法1、直方图求解2、直方图均衡化3、直方图规定化4、图像平滑5、邻域平均法(线性)6、中值滤波法(分线性)7、中值滤波与领域平均的异同8、4-邻域平滑法9、超限像素平滑法10、灰度最相近的K个邻点平均法11、3*3模板中值滤波四、图像锐化1、微分法(梯度算子)2、微分法(Roberts算子)3、微分法(sobel算子)五、腐蚀与膨胀1、腐蚀2、膨
- Open CV 图像处理基础:(七)学习 OpenCV 的图像增强和边缘检测功能
無间行者
OpenCV图像处理学习opencvjava
在Java中学习使用OpenCV的图像增强和边缘检测功能目录在Java中学习使用OpenCV的图像增强和边缘检测功能前言图像增强功能对比度调整(Core.addWeighted())函数原型:参数说明:代码:示例直方图均衡化(Imgproc.equalizeHist())函数原型:参数说明:代码:示例边缘检测功能Canny边缘检测(Imgproc.Canny())函数原型:代码:示例总结OpenC
- python数字图像处理基础(七)——直方图均衡化、傅里叶变换
_hermit:
数字图像处理python计算机视觉开发语言
目录直方图均衡化均衡化原理均衡化效果标准直方图均衡化自适应直方图均衡化傅里叶变换原理低通滤波高通滤波直方图均衡化均衡化原理图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高->均衡本质上,直方图均衡化的工作原理是:1.计算图像像素强度的直方图2
- 现代数字图像处理---lena图像处理
启程.py
lena图像处理图像处理python学习
实现幂律变换,对lena图像(灰度)进行处理,观察在不同gamma数值下图像的变化和特点。观察lena图像的直方图,实现lena图像的直方图均衡,观察效果。代码及内容展示和分析:1.1选用c*log(x,base)来处理lena的每一个像素,并取不同的参数和底数importcv2ascvimportnumpyasnpimportmathLena=cv.imread(‘lena.jpeg’,0)q=
- 三 (3.2 imgproc) 图像直方图
交大小丑
直方图均衡化—OpenCV2.3.2documentationhttp://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html#histogram-equalization图像的直方图是什么?直方图是图像中
- 使用Python通过四元数傅里叶变换实现图像增强
DarthP
python计算机视觉opencv人工智能图像处理
使用Python实现图像增强通常需要以下步骤:加载图像:使用图像处理库,如OpenCV或PIL读取图像。傅里叶变换:对图像进行傅里叶变换,将图像从时域变换到频域。图像增强:在频域中应用图像增强算法,如频域滤波器,频域直方图均衡化等。傅里叶反变换:对增强后的图像进行傅里叶反变换,将图像从频域变换回时域。保存图像:将增强后的图像保存到磁盘上。以上是一般的图像增强流程,具体的代码实现可能因使用的图像处理
- 《数字图像处理》第三章 灰度变换和空间滤波 学习笔记附部分例子代码(C++ & opencv)
:铭碑于心、
《数字图像处理》学习笔记附部分实例代码实现学习笔记c++图像处理opencv
灰度变换和空间滤波前言1.变换和滤波基础2.一些基本的灰度变换函数2.1图像反转:2.2对数变换:2.3幂律变换:2.4分段线性变换函数:3.直方图处理3.1直方图均衡化3.2直方图匹配4.空间滤波基础4.1空间滤波原理4.2空间相关与卷积5.平滑空间滤波器5.1平滑线性滤波5.2统计排序(非线性)滤波器opencv的补充:前言本系列博客参考书为,数字图像处理第三版-冈萨雷斯第三版教材中图片下载地
- Python图像处理【16】OpenCV直方图均衡化
AI technophile
python图像处理opencv
OpenCV直方图均衡化0.前言1.直方图均衡化算法2.全局直方图均衡化2.1使用最小-最大归一化缩放CDF2.2将输入RGB图像转换为LAB空间3.自适应直方图均衡化3.1算法原理3.2使用OpenCV执行自适应直方图均衡化4.直方图均衡化结果小结系列链接0.前言对比度拉伸/直方图均衡化使用单调非线性映射重新分配输入图像中的像素强度值,以使输出图像具有均匀的强度分布(平坦直方图),从而增强图像的
- AE (4)_ 直方图调整的理论
search7
图像调试图像处理cameratuning
#灵感#在短暂的高通平台调试中,很看重直方图调整的理解。后来其它平台,不怎么调整这个了。但还是记录一下。我个人还是倾向招式简单,但应用到极致。绝大部分内容来自:刘斯宁,ImageEnhancement-CLAHE-知乎(zhihu.com)穿插个人的部分理解。目录英文解释:对比度:简单---对比度拉伸:升级---直方图均衡化HE:直方图均衡的局限:改进---自适应直方图均衡化(AHE):高通平台的
- 空间域图像增强之直方图均衡的python代码实现——冈萨雷斯数字图像处理
筱筱西雨
图像处理pythonopencv计算机视觉
原理直方图:图像的直方图是一个图像中像素强度值分布的图表。对于灰度图像,直方图展示了每个灰度级出现的频率。直方图均衡步骤:计算累积分布函数(CDF):首先,计算图像的直方图,然后基于这个直方图生成累积分布函数。CDF是每个强度值及其以下强度值出现频率的累加。归一化CDF:将CDF归一化到[0,255](对于8位图像)的范围内,以便它可以映射到标准的灰度级。映射新的强度值:使用归一化的CDF来映射每
- 国科大2023.12.28图像处理0854最后一节划重点
智商欠费,不死也废
期末图像处理人工智能
国科大图像处理2023速通期末——汇总2017-2019图像处理王伟强作业课件资料第1、2章不考第3章空间域图像增强3.2基本灰度变换(考过填空)3.2.1图像反转3.2.2对数变换3.2.3幂次变换3.3直方图处理3.3.1直方图均衡化(大题计算)3.3.2直方图匹配(规定化)3.3.3不看3.3.4不看3.4不看3.5空间滤波基础(重点什么题,没听清)卷积重中之重3.6平滑空间滤波器(什么什么
- OpenCV-Python(22):直方图均衡化
图灵追慕者
opencv-pythonopencv计算机视觉直方图均衡化
直方图术语在图像处理和计算机视觉中,与直方图相关的一些术语包括:灰度直方图(Gray-levelhistogram):用于描述图像中各个灰度级别的像素数量分布。彩色直方图(Colorhistogram):用于描述图像中各个颜色通道的像素数量分布,如红色通道、绿色通道和蓝色通道。亮度直方图(Luminancehistogram):用于描述图像中各个亮度级别的像素数量分布。色彩直方图(Colorhis
- 数字图像处理-空间域图像增强-爆肝18小时用通俗语言进行超详细的总结
亿维数组
超高质量总结文章DigitalImageProcessing计算机视觉数字图像处理学习笔记
目录灰度变换直方图(Histogram)直方图均衡直方图匹配(规定化)空间滤波低通滤波器高通滤波器本文章讲解数字图像处理空间域图像增强,大部分内容来源于课堂笔记中灰度变换图像增强:对图像进行处理,使其更适合于某种特定的应用,有空间域图像增强和变换域图像增强空间域图像增强是在图像的像素级别进行操作的一种方法。它直接对图像的原始像素值进行处理,常见的空间域增强技术包括直方图均衡化、滤波(如均值滤波、中
- 数字图像处理——局部直方图处理【像素级别处理】(python)
Gowi_fly
数字图像处理
数字图像处理——局部直方图均衡化【像素级别处理】(python)局部直方图处理是弄一个略大于图片的矩阵,超过图片的部分用0来代替像素值,在这个局部进行直方图均衡化。输入:importcv2importnumpyasnpimportmatplotlib.pyplotaspltimportdatetime#局部直方图处理3.3.3节#使用3*3的领域处理img=cv2.imread('Fig0326.
- 图像色彩还原算法
LittroInno
机器学习深度学习图像处理
图像色彩还原算法的目标是改善或修复图像中失真、退色或其他色彩问题。以下是一些常见的图像色彩还原算法:白平衡算法:白平衡算法旨在校正图像中的色温,使其看起来更自然。其中一种简单的方法是灰度世界假设,即假设整个图像的平均亮度应为灰度。其他方法包括基于灰度世界的自适应方法和基于最小均方差的方法。直方图均衡化:直方图均衡化是一种用于增强图像对比度的方法,可以在某些情况下改善图像的色彩还原。然而,它可能引入
- 关于halcon的图像平滑、去噪几种方法及算子介绍
icecream_cheese
图像处理算法计算机视觉
图像增强看这。阈值分割看这。直方图均衡化直方图均衡化的一般是处理图像偏暗、偏亮、以及亮度过于集中等现象https://zhuanlan.zhihu.com/p/54771264方法的基本思想是对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。从而达到清晰图像的目的。halcon中直方图均衡化一般是用这两个算子gray_histo(Region,ImageEquHisto,Abs
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam