1,在LinkedHashSet源代码中可以发现,只是简单的实现了构造方法,其实具体实现在HashSet中,如果是LinkedHashSet,则底层是用LinkedHashMap实现的
//构造方法,map用的是LinkedHashMap HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); }
/* * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; /** * <p>Hash table and linked list implementation of the <tt>Set</tt> interface, * with predictable iteration order. This implementation differs from * <tt>HashSet</tt> in that it maintains a doubly-linked list running through * all of its entries. This linked list defines the iteration ordering, * which is the order in which elements were inserted into the set * (<i>insertion-order</i>). Note that insertion order is <i>not</i> affected * if an element is <i>re-inserted</i> into the set. (An element <tt>e</tt> * is reinserted into a set <tt>s</tt> if <tt>s.add(e)</tt> is invoked when * <tt>s.contains(e)</tt> would return <tt>true</tt> immediately prior to * the invocation.) * * <p>This implementation spares its clients from the unspecified, generally * chaotic ordering provided by {@link HashSet}, without incurring the * increased cost associated with {@link TreeSet}. It can be used to * produce a copy of a set that has the same order as the original, regardless * of the original set's implementation: * <pre> * void foo(Set s) { * Set copy = new LinkedHashSet(s); * ... * } * </pre> * This technique is particularly useful if a module takes a set on input, * copies it, and later returns results whose order is determined by that of * the copy. (Clients generally appreciate having things returned in the same * order they were presented.) * * <p>This class provides all of the optional <tt>Set</tt> operations, and * permits null elements. Like <tt>HashSet</tt>, it provides constant-time * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and * <tt>remove</tt>), assuming the hash function disperses elements * properly among the buckets. Performance is likely to be just slightly * below that of <tt>HashSet</tt>, due to the added expense of maintaining the * linked list, with one exception: Iteration over a <tt>LinkedHashSet</tt> * requires time proportional to the <i>size</i> of the set, regardless of * its capacity. Iteration over a <tt>HashSet</tt> is likely to be more * expensive, requiring time proportional to its <i>capacity</i>. * * <p>A linked hash set has two parameters that affect its performance: * <i>initial capacity</i> and <i>load factor</i>. They are defined precisely * as for <tt>HashSet</tt>. Note, however, that the penalty for choosing an * excessively high value for initial capacity is less severe for this class * than for <tt>HashSet</tt>, as iteration times for this class are unaffected * by capacity. * * <p><strong>Note that this implementation is not synchronized.</strong> * If multiple threads access a linked hash set concurrently, and at least * one of the threads modifies the set, it <em>must</em> be synchronized * externally. This is typically accomplished by synchronizing on some * object that naturally encapsulates the set. * * If no such object exists, the set should be "wrapped" using the * {@link Collections#synchronizedSet Collections.synchronizedSet} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the set: <pre> * Set s = Collections.synchronizedSet(new LinkedHashSet(...));</pre> * * <p>The iterators returned by this class's <tt>iterator</tt> method are * <em>fail-fast</em>: if the set is modified at any time after the iterator * is created, in any way except through the iterator's own <tt>remove</tt> * method, the iterator will throw a {@link ConcurrentModificationException}. * Thus, in the face of concurrent modification, the iterator fails quickly * and cleanly, rather than risking arbitrary, non-deterministic behavior at * an undetermined time in the future. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements maintained by this set * * @author Josh Bloch * @see Object#hashCode() * @see Collection * @see Set * @see HashSet * @see TreeSet * @see Hashtable * @since 1.4 */ /* 具有可预知迭代顺序的 Set 接口的哈希表和链接列表实现。此实现与 HashSet 的不同之外在于, 后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,即按照将元素插入 到 set 中的顺序(插入顺序)进行迭代。注意,插入顺序不 受在 set 中重新插入的 元素的影响。 (如果在 s.contains(e) 返回 true 后立即调用 s.add(e),则元素 e 会被重新插入到 set s 中。) 此实现可以让客户免遭未指定的、由 HashSet 提供的通常杂乱无章的排序工作,而又不致引起与 TreeSet 关联的成本增加。使用它可以生成一个与原来顺序相同的 set 副本,并且与原 set 的实现无关: void foo(Set s) { Set copy = new LinkedHashSet(s); ... } 如果模块通过输入得到一个 set,复制这个 set,然后返回由此副本决定了顺序的结果, 这种情况下这项技术特别有用。(客户通常期望内容返回的顺序与它们出现的顺序相同。) 此类提供所有可选的 Set 操作,并且允许 null 元素。与 HashSet 一样,它可以为基本操作 (add、contains 和 remove)提供稳定的性能,假定哈希函数将元素正确地分布到存储段中。 由于增加了维护链接列表的开支,其性能很可能会比 HashSet 稍逊一筹,不过,这一点例外: LinkedHashSet 迭代所需时间与 set 的大小 成正比,而与容量无关。HashSet 迭代很可能支出较大, 因为它所需迭代时间与其容量 成正比。 链接的哈希 set 有两个影响其性能的参数:初始容量 和加载因子。它们与 HashSet 中的定义极其相同。 注意,为初始容量选择非常高的值对此类的影响比对 HashSet 要小,因为此类的迭代时间不受容量的影响。 注意,此实现不是同步的。如果多个线程同时访问链接的哈希 set,而其中至少一个线程修改了该 set, 则它必须 保持外部同步。这一般通过对自然封装该 set 的对象进行同步操作来完成。如果不存在这样的对象, 则应该使用 Collections.synchronizedSet 方法来“包装”该 set。最好在创建时完成这一操作,以防止意外的非同步访问: Set s = Collections.synchronizedSet(new LinkedHashSet(...)); 此类的 iterator 方法返回的迭代器是快速失败 的:在迭代器创建之后,如果对 set 进行修改, 除非通过迭代器自身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败, 而不冒将来不确定的时间任意发生不确定行为的风险。 注意,迭代器的快速失败行为不能得到保证,一般来说,存在不同步的并发修改时, 不可能作出任何强有力的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。 因此,编写依赖于此异常的程序的方式是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。 */ public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, java.io.Serializable { private static final long serialVersionUID = -2851667679971038690L; /** * Constructs a new, empty linked hash set with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity of the linked hash set * @param loadFactor the load factor of the linked hash set * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive */ //调用父类HashSet的构造方法 public LinkedHashSet(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor, true); } /** * Constructs a new, empty linked hash set with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity of the LinkedHashSet * @throws IllegalArgumentException if the initial capacity is less * than zero */ //调用父类的构造方法 public LinkedHashSet(int initialCapacity) { super(initialCapacity, .75f, true); } /** * Constructs a new, empty linked hash set with the default initial * capacity (16) and load factor (0.75). */ //调用父类的构造方法 public LinkedHashSet() { super(16, .75f, true); } /** * Constructs a new linked hash set with the same elements as the * specified collection. The linked hash set is created with an initial * capacity sufficient to hold the elements in the specified collection * and the default load factor (0.75). * * @param c the collection whose elements are to be placed into * this set * @throws NullPointerException if the specified collection is null */ //调用父类的构造方法 public LinkedHashSet(Collection<? extends E> c) { super(Math.max(2*c.size(), 11), .75f, true); addAll(c); } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@code Spliterator} over the elements in this set. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#DISTINCT}, and {@code ORDERED}. Implementations * should document the reporting of additional characteristic values. * * @implNote * The implementation creates a * <em><a href="Spliterator.html#binding">late-binding</a></em> spliterator * from the set's {@code Iterator}. The spliterator inherits the * <em>fail-fast</em> properties of the set's iterator. * The created {@code Spliterator} additionally reports * {@link Spliterator#SUBSIZED}. * * @return a {@code Spliterator} over the elements in this set * @since 1.8 */ @Override public Spliterator<E> spliterator() { return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED); } }