LinkedHashSet 源代码

1,在LinkedHashSet源代码中可以发现,只是简单的实现了构造方法,其实具体实现在HashSet中,如果是LinkedHashSet,则底层是用LinkedHashMap实现的

    //构造方法,map用的是LinkedHashMap
    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }

2、源代码

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package java.util;

/**
 * <p>Hash table and linked list implementation of the <tt>Set</tt> interface,
 * with predictable iteration order.  This implementation differs from
 * <tt>HashSet</tt> in that it maintains a doubly-linked list running through
 * all of its entries.  This linked list defines the iteration ordering,
 * which is the order in which elements were inserted into the set
 * (<i>insertion-order</i>).  Note that insertion order is <i>not</i> affected
 * if an element is <i>re-inserted</i> into the set.  (An element <tt>e</tt>
 * is reinserted into a set <tt>s</tt> if <tt>s.add(e)</tt> is invoked when
 * <tt>s.contains(e)</tt> would return <tt>true</tt> immediately prior to
 * the invocation.)
 *
 * <p>This implementation spares its clients from the unspecified, generally
 * chaotic ordering provided by {@link HashSet}, without incurring the
 * increased cost associated with {@link TreeSet}.  It can be used to
 * produce a copy of a set that has the same order as the original, regardless
 * of the original set's implementation:
 * <pre>
 *     void foo(Set s) {
 *         Set copy = new LinkedHashSet(s);
 *         ...
 *     }
 * </pre>
 * This technique is particularly useful if a module takes a set on input,
 * copies it, and later returns results whose order is determined by that of
 * the copy.  (Clients generally appreciate having things returned in the same
 * order they were presented.)
 *
 * <p>This class provides all of the optional <tt>Set</tt> operations, and
 * permits null elements.  Like <tt>HashSet</tt>, it provides constant-time
 * performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
 * <tt>remove</tt>), assuming the hash function disperses elements
 * properly among the buckets.  Performance is likely to be just slightly
 * below that of <tt>HashSet</tt>, due to the added expense of maintaining the
 * linked list, with one exception: Iteration over a <tt>LinkedHashSet</tt>
 * requires time proportional to the <i>size</i> of the set, regardless of
 * its capacity.  Iteration over a <tt>HashSet</tt> is likely to be more
 * expensive, requiring time proportional to its <i>capacity</i>.
 *
 * <p>A linked hash set has two parameters that affect its performance:
 * <i>initial capacity</i> and <i>load factor</i>.  They are defined precisely
 * as for <tt>HashSet</tt>.  Note, however, that the penalty for choosing an
 * excessively high value for initial capacity is less severe for this class
 * than for <tt>HashSet</tt>, as iteration times for this class are unaffected
 * by capacity.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a linked hash set concurrently, and at least
 * one of the threads modifies the set, it <em>must</em> be synchronized
 * externally.  This is typically accomplished by synchronizing on some
 * object that naturally encapsulates the set.
 *
 * If no such object exists, the set should be "wrapped" using the
 * {@link Collections#synchronizedSet Collections.synchronizedSet}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the set: <pre>
 *   Set s = Collections.synchronizedSet(new LinkedHashSet(...));</pre>
 *
 * <p>The iterators returned by this class's <tt>iterator</tt> method are
 * <em>fail-fast</em>: if the set is modified at any time after the iterator
 * is created, in any way except through the iterator's own <tt>remove</tt>
 * method, the iterator will throw a {@link ConcurrentModificationException}.
 * Thus, in the face of concurrent modification, the iterator fails quickly
 * and cleanly, rather than risking arbitrary, non-deterministic behavior at
 * an undetermined time in the future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:   <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <E> the type of elements maintained by this set
 *
 * @author  Josh Bloch
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Set
 * @see     HashSet
 * @see     TreeSet
 * @see     Hashtable
 * @since   1.4
 */
/*
具有可预知迭代顺序的 Set 接口的哈希表和链接列表实现。此实现与 HashSet 的不同之外在于,
后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,即按照将元素插入
到 set 中的顺序(插入顺序)进行迭代。注意,插入顺序不 受在 set 中重新插入的 元素的影响。
(如果在 s.contains(e) 返回 true 后立即调用 s.add(e),则元素 e 会被重新插入到 set s 中。)

此实现可以让客户免遭未指定的、由 HashSet 提供的通常杂乱无章的排序工作,而又不致引起与
TreeSet 关联的成本增加。使用它可以生成一个与原来顺序相同的 set 副本,并且与原 set 的实现无关:

     void foo(Set s) {
         Set copy = new LinkedHashSet(s);
         ...
     }
 如果模块通过输入得到一个 set,复制这个 set,然后返回由此副本决定了顺序的结果,
 这种情况下这项技术特别有用。(客户通常期望内容返回的顺序与它们出现的顺序相同。)
此类提供所有可选的 Set 操作,并且允许 null 元素。与 HashSet 一样,它可以为基本操作
(add、contains 和 remove)提供稳定的性能,假定哈希函数将元素正确地分布到存储段中。
由于增加了维护链接列表的开支,其性能很可能会比 HashSet 稍逊一筹,不过,这一点例外:
LinkedHashSet 迭代所需时间与 set 的大小 成正比,而与容量无关。HashSet 迭代很可能支出较大,
因为它所需迭代时间与其容量 成正比。

链接的哈希 set 有两个影响其性能的参数:初始容量 和加载因子。它们与 HashSet 中的定义极其相同。
注意,为初始容量选择非常高的值对此类的影响比对 HashSet 要小,因为此类的迭代时间不受容量的影响。

注意,此实现不是同步的。如果多个线程同时访问链接的哈希 set,而其中至少一个线程修改了该 set,
则它必须 保持外部同步。这一般通过对自然封装该 set 的对象进行同步操作来完成。如果不存在这样的对象,
则应该使用 Collections.synchronizedSet 方法来“包装”该 set。最好在创建时完成这一操作,以防止意外的非同步访问:

     Set s = Collections.synchronizedSet(new LinkedHashSet(...));
 此类的 iterator 方法返回的迭代器是快速失败 的:在迭代器创建之后,如果对 set 进行修改,
 除非通过迭代器自身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出
 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,
 而不冒将来不确定的时间任意发生不确定行为的风险。

注意,迭代器的快速失败行为不能得到保证,一般来说,存在不同步的并发修改时,
不可能作出任何强有力的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。
因此,编写依赖于此异常的程序的方式是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

 */
public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {

    private static final long serialVersionUID = -2851667679971038690L;

    /**
     * Constructs a new, empty linked hash set with the specified initial
     * capacity and load factor.
     *
     * @param      initialCapacity the initial capacity of the linked hash set
     * @param      loadFactor      the load factor of the linked hash set
     * @throws     IllegalArgumentException  if the initial capacity is less
     *               than zero, or if the load factor is nonpositive
     */
    //调用父类HashSet的构造方法
    public LinkedHashSet(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor, true);
    }

    /**
     * Constructs a new, empty linked hash set with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param   initialCapacity   the initial capacity of the LinkedHashSet
     * @throws  IllegalArgumentException if the initial capacity is less
     *              than zero
     */
    //调用父类的构造方法
    public LinkedHashSet(int initialCapacity) {
        super(initialCapacity, .75f, true);
    }

    /**
     * Constructs a new, empty linked hash set with the default initial
     * capacity (16) and load factor (0.75).
     */
    //调用父类的构造方法
    public LinkedHashSet() {
        super(16, .75f, true);
    }

    /**
     * Constructs a new linked hash set with the same elements as the
     * specified collection.  The linked hash set is created with an initial
     * capacity sufficient to hold the elements in the specified collection
     * and the default load factor (0.75).
     *
     * @param c  the collection whose elements are to be placed into
     *           this set
     * @throws NullPointerException if the specified collection is null
     */
    //调用父类的构造方法
    public LinkedHashSet(Collection<? extends E> c) {
        super(Math.max(2*c.size(), 11), .75f, true);
        addAll(c);
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@code Spliterator} over the elements in this set.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
     * {@link Spliterator#DISTINCT}, and {@code ORDERED}.  Implementations
     * should document the reporting of additional characteristic values.
     *
     * @implNote
     * The implementation creates a
     * <em><a href="Spliterator.html#binding">late-binding</a></em> spliterator
     * from the set's {@code Iterator}.  The spliterator inherits the
     * <em>fail-fast</em> properties of the set's iterator.
     * The created {@code Spliterator} additionally reports
     * {@link Spliterator#SUBSIZED}.
     *
     * @return a {@code Spliterator} over the elements in this set
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);
    }
}



你可能感兴趣的:(java,源代码,linkedhashset)