[bzoj3669][NOI2014]魔法森林

题目大意

给定N个点M条边的无向图,每条边有两个权值a与b。求一条1到n的路径使得路径经过边的最大a与最大b的和最小。无法到达输出-1。
n<=50000,m<=100000。

思想

我们尝试枚举路径的最大a值,那么我们只需按照a排序按顺序插入,维护1到n的b最大值即可。
用并查集维护连通性。当加入j到k这条边时如果形成环,则删除环上的最大值。
我们用动态树来进行维护。
为了实现更易,将每条边看做一个点,例如第i条边两个端点是j与k,那么将i+n与j、k相连,权值放在代表边的点上。

参考程序

#include<cstdio>
#include<algorithm>
#include<stack>
#include<cstring>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int maxn=50000+10;
stack<int> sta;
struct dong{
    int x,y,a,b;
};
dong e[maxn*2];
int tree[maxn*3][2],key[maxn*3],father[maxn*3],num[maxn*3],pp[maxn*3],fa[maxn];
int i,j,k,l,t,n,m,ans;
bool bz[maxn*3];
int Max(int a,int b){
    if (key[a]>key[b]) return a;else return b;
}
int pd(int x){
    if (tree[father[x]][0]==x) return 0;else return 1;
}
void update(int x){
    num[x]=Max(x,Max(num[tree[x][0]],num[tree[x][1]]));
}
void rotate(int x){
    int y=father[x],z=pd(x);
    tree[y][z]=tree[x][1-z];
    if (tree[x][1-z]) father[tree[y][z]]=y;
    father[x]=father[y];
    if (father[y]) tree[father[y]][pd(y)]=x;
    father[y]=x;
    tree[x][1-z]=y;
    update(y);
    update(x);
    if (pp[y]) pp[x]=pp[y],pp[y]=0;
}
void clear(int x){
    if (bz[x]){
        bz[x]=0;
        if (tree[x][0]) bz[tree[x][0]]^=1;
        if (tree[x][1]) bz[tree[x][1]]^=1;
        swap(tree[x][0],tree[x][1]);
    }
}
void romove(int x,int y){
    while (x!=y){
        sta.push(x);
        x=father[x];
    }
    while (!sta.empty()){
        clear(sta.top());
        sta.pop();
    }
}
void splay(int x,int y){
    romove(x,y);
    while (father[x]!=y){
        if (father[father[x]]!=y)
            if (pd(x)==pd(father[x])) rotate(x);else rotate(father[x]);
        rotate(x);
    }
}
void access(int x){
    int y;
    splay(x,0);
    father[tree[x][1]]=0;
    if (tree[x][1]) pp[tree[x][1]]=x;
    tree[x][1]=0;
    update(x);
    while (pp[x]!=0){
        y=pp[x];
        splay(y,0);
        father[tree[y][1]]=0;
        if (tree[y][1]) pp[tree[y][1]]=y;
        tree[y][1]=x;
        father[x]=y;
        pp[x]=0;
        update(y);
        splay(x,0);
    }
}
void makeroot(int x){
    access(x);
    splay(x,0);
    bz[x]^=1;
}
void link(int x,int y){
    makeroot(x);
    access(y);
    splay(x,0);
    pp[x]=y;
    access(x);
}
void cut(int x,int y){
    makeroot(x);
    access(y);
    splay(y,0);
    pp[y]=0;
    father[tree[y][0]]=0;
    if (tree[y][0]) tree[y][0]=0;
    update(y);
}
int getfa(int x){
    return fa[x]?fa[x]=getfa(fa[x]):x;
}
bool cmp(dong a,dong b){
    return a.a<b.a;
}
int main(){
    scanf("%d%d",&n,&m);
    key[0]=-1;num[0]=0;
    fo(i,1,n) num[i]=i;
    fo(i,1,m) scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
    sort(e+1,e+m+1,cmp);
    ans=10000000;
    fo(i,1,m){
        j=e[i].x;k=e[i].y;
        if (getfa(j)==getfa(k)){
            makeroot(j);
            access(k);
            splay(k,0);
            if (key[num[k]]>e[i].b){
                l=num[k];
                cut(l,e[l-n].x);
                cut(l,e[l-n].y);
            }
            else{
                if (getfa(1)==getfa(n)){
                    makeroot(1);
                    access(n);
                    splay(n,0);
                    ans=min(ans,e[i].a+key[num[n]]);
                }
                //printf("%d\n",i);
                continue;
            }
        }
        else fa[getfa(k)]=getfa(j);
        key[i+n]=e[i].b;
        num[i+n]=i+n;
        link(i+n,j);
        link(i+n,k);
        if (getfa(1)==getfa(n)){
            makeroot(1);
            access(n);
            splay(n,0);
            ans=min(ans,e[i].a+key[num[n]]);
        }
        //printf("%d\n",i);
    }
    if (ans==10000000) ans=-1;
    printf("%d\n",ans);
}

你可能感兴趣的:([bzoj3669][NOI2014]魔法森林)