Volley图片加载功能

Gituhb项目

Volley源码中文注释项目我已经上传到github,欢迎大家fork和start.

为什么写这篇博客

本来文章是维护在github上的,但是我在分析ImageLoader源码过程中与到了一个问题,希望大家能帮助解答.

Volley获取网络图片

本来想分析Universal Image Loader的源码,但是发现Volley已经实现了网络图片的加载功能.其实,网络图片的加载也是分几个步骤:
1. 获取网络图片的url.
2. 判断该url对应的图片是否有本地缓存.
3. 有本地缓存,直接使用本地缓存图片,通过异步回调给ImageView进行设置.
4. 无本地缓存,就先从网络拉取,保存在本地后,再通过异步回调给ImageView进行设置.

我们通过Volley源码,看一下Volley是否是按照这个步骤实现网络图片加载的.

ImageRequest.java

按照Volley的架构,我们首先需要构造一个网络图片请求,Volley帮我们封装了ImageRequest类,我们来看一下它的具体实现:

/** 网络图片请求类. */
@SuppressWarnings("unused")
public class ImageRequest extends Request<Bitmap> {
    /** 默认图片获取的超时时间(单位:毫秒) */
    public static final int DEFAULT_IMAGE_REQUEST_MS = 1000;

    /** 默认图片获取的重试次数. */
    public static final int DEFAULT_IMAGE_MAX_RETRIES = 2;

    private final Response.Listener<Bitmap> mListener;
    private final Bitmap.Config mDecodeConfig;
    private final int mMaxWidth;
    private final int mMaxHeight;
    private ImageView.ScaleType mScaleType;

    /** Bitmap解析同步锁,保证同一时间只有一个Bitmap被load到内存进行解析,防止OOM. */
    private static final Object sDecodeLock = new Object();

    /** * 构造一个网络图片请求. * @param url 图片的url地址. * @param listener 请求成功用户设置的回调接口. * @param maxWidth 图片的最大宽度. * @param maxHeight 图片的最大高度. * @param scaleType 图片缩放类型. * @param decodeConfig 解析bitmap的配置. * @param errorListener 请求失败用户设置的回调接口. */
    public ImageRequest(String url, Response.Listener<Bitmap> listener, int maxWidth, int maxHeight,
                        ImageView.ScaleType scaleType, Bitmap.Config decodeConfig,
                        Response.ErrorListener errorListener) {
        super(Method.GET, url, errorListener);
        mListener = listener;
        mDecodeConfig = decodeConfig;
        mMaxWidth = maxWidth;
        mMaxHeight = maxHeight;
        mScaleType = scaleType;
    }

    /** 设置网络图片请求的优先级. */
    @Override
    public Priority getPriority() {
        return Priority.LOW;
    }

    @Override
    protected Response<Bitmap> parseNetworkResponse(NetworkResponse response) {
        synchronized (sDecodeLock) {
            try {
                return doParse(response);
            } catch (OutOfMemoryError e) {
                return Response.error(new VolleyError(e));
            }
        }
    }

    private Response<Bitmap> doParse(NetworkResponse response) {
        byte[] data = response.data;
        BitmapFactory.Options decodeOptions = new BitmapFactory.Options();
        Bitmap bitmap;
        if (mMaxWidth == 0 && mMaxHeight == 0) {
            decodeOptions.inPreferredConfig = mDecodeConfig;
            bitmap = BitmapFactory.decodeByteArray(data, 0, data.length, decodeOptions);
        } else {
            // 获取网络图片的真实尺寸.
            decodeOptions.inJustDecodeBounds = true;
            BitmapFactory.decodeByteArray(data, 0, data.length, decodeOptions);
            int actualWidth = decodeOptions.outWidth;
            int actualHeight = decodeOptions.outHeight;

            int desiredWidth = getResizedDimension(mMaxWidth, mMaxHeight,
                    actualWidth, actualHeight, mScaleType);
            int desireHeight = getResizedDimension(mMaxWidth, mMaxHeight,
                    actualWidth, actualHeight, mScaleType);

            decodeOptions.inJustDecodeBounds = false;
            decodeOptions.inSampleSize =
                    findBestSampleSize(actualWidth, actualHeight, desiredWidth, desireHeight);
            Bitmap tempBitmap = BitmapFactory.decodeByteArray(data, 0, data.length, decodeOptions);

            if (tempBitmap != null && (tempBitmap.getWidth() > desiredWidth ||
                    tempBitmap.getHeight() > desireHeight)) {
                bitmap = Bitmap.createScaledBitmap(tempBitmap, desiredWidth, desireHeight, true);
                tempBitmap.recycle();
            } else {
                bitmap = tempBitmap;
            }
        }

        if (bitmap == null) {
            return Response.error(new VolleyError(response));
        } else {
            return Response.success(bitmap, HttpHeaderParser.parseCacheHeaders(response));
        }
    }

    static int findBestSampleSize(
            int actualWidth, int actualHeight, int desiredWidth, int desireHeight) {
        double wr = (double) actualWidth / desiredWidth;
        double hr = (double) actualHeight / desireHeight;
        double ratio = Math.min(wr, hr);
        float n = 1.0f;
        while ((n * 2) <= ratio) {
            n *= 2;
        }
        return (int) n;
    }

    /** 根据ImageView的ScaleType设置图片的大小. */
    private static int getResizedDimension(int maxPrimary, int maxSecondary, int actualPrimary,
                                           int actualSecondary, ImageView.ScaleType scaleType) {
        // 如果没有设置ImageView的最大值,则直接返回网络图片的真实大小.
        if ((maxPrimary == 0) && (maxSecondary == 0)) {
            return actualPrimary;
        }

        // 如果ImageView的ScaleType为FIX_XY,则将其设置为图片最值.
        if (scaleType == ImageView.ScaleType.FIT_XY) {
            if (maxPrimary == 0) {
                return actualPrimary;
            }
            return maxPrimary;
        }

        if (maxPrimary == 0) {
            double ratio = (double)maxSecondary / (double)actualSecondary;
            return (int)(actualPrimary * ratio);
        }

        if (maxSecondary == 0) {
            return maxPrimary;
        }

        double ratio = (double) actualSecondary / (double) actualPrimary;
        int resized = maxPrimary;

        if (scaleType == ImageView.ScaleType.CENTER_CROP) {
            if ((resized * ratio) < maxSecondary) {
                resized = (int)(maxSecondary / ratio);
            }
            return resized;
        }

        if ((resized * ratio) > maxSecondary) {
            resized = (int)(maxSecondary / ratio);
        }

        return resized;
    }


    @Override
    protected void deliverResponse(Bitmap response) {
        mListener.onResponse(response);
    }
}

因为Volley本身框架已经实现了对网络请求的本地缓存,所以ImageRequest做的主要事情就是解析字节流为Bitmap,再解析过程中,通过静态变量保证每次只解析一个Bitmap防止OOM,使用ScaleType和用户设置的MaxWidth和MaxHeight来设置图片大小.
总体来说,ImageRequest的实现非常简单,这里不做过多的讲解.ImageRequest的缺陷在于:

  1. 需要用户进行过多的设置,包括图片的大小的最大值.
  2. 没有图片的内存缓存,因为Volley的缓存是基于Disk的缓存,有对象反序列化的过程.

ImageLoader.java

鉴于以上两个缺点,Volley又提供了一个更牛逼的ImageLoader类.其中,最关键的就是增加了内存缓存.
再讲解ImageLoader的源码之前,需要先介绍一下ImageLoader的使用方法.和之前的Request请求不同,ImageLoader并不是new出来直接扔给RequestQueue进行调度,它的使用方法大体分为4步:

  • 创建一个RequestQueue对象.
RequestQueue queue = Volley.newRequestQueue(context);
  • 创建一个ImageLoader对象.ImageLoader构造函数接收两个参数,第一个是RequestQueue对象,第二个是ImageCache对象(也就是内存缓存类,我们先不给出具体实现,讲解完ImageLoader源码之后,我会提供一个利用LRU算法的ImageCache实现类)
ImageLoader imageLoader = new ImageLoader(queue, new ImageCache() {
    @Override
    public void putBitmap(String url, Bitmap bitmap) {}
    @Override
    public Bitmap getBitmap(String url) { return null; }
});
  • 获取一个ImageListener对象.
ImageListener listener = ImageLoader.getImageListener(imageView, R.drawable.default_imgage, R.drawable.failed_image);
  • 调用ImageLoader的get方法加载网络图片.
imageLoader.get(mImageUrl, listener, maxWidth, maxHeight, scaleType);

有了ImageLoader的使用方法,我们结合使用方法来看一下ImageLoader的源码:

@SuppressWarnings({"unused", "StringBufferReplaceableByString"})
public class ImageLoader {
    /** * 关联用来调用ImageLoader的RequestQueue. */
    private final RequestQueue mRequestQueue;

    /** 图片内存缓存接口实现类. */
    private final ImageCache mCache;

    /** 存储同一时间执行的相同CacheKey的BatchedImageRequest集合. */
    private final HashMap<String, BatchedImageRequest> mInFlightRequests =
            new HashMap<String, BatchedImageRequest>();

    private final HashMap<String, BatchedImageRequest> mBatchedResponses =
            new HashMap<String, BatchedImageRequest>();

    /** 获取主线程的Handler. */
    private final Handler mHandler = new Handler(Looper.getMainLooper());


    private Runnable mRunnable;

    /** 定义图片K1缓存接口,即将图片的内存缓存工作交给用户来实现. */
    public interface ImageCache {
        Bitmap getBitmap(String url);
        void putBitmap(String url, Bitmap bitmap);
    }

    /** 构造一个ImageLoader. */
    public ImageLoader(RequestQueue queue, ImageCache imageCache) {
        mRequestQueue = queue;
        mCache = imageCache;
    }

    /** 构造网络图片请求成功和失败的回调接口. */
    public static ImageListener getImageListener(final ImageView view, final int defaultImageResId,
                                                 final int errorImageResId) {
        return new ImageListener() {
            @Override
            public void onResponse(ImageContainer response, boolean isImmediate) {
                if (response.getBitmap() != null) {
                    view.setImageBitmap(response.getBitmap());
                } else if (defaultImageResId != 0) {
                    view.setImageResource(defaultImageResId);
                }
            }

            @Override
            public void onErrorResponse(VolleyError error) {
                if (errorImageResId != 0) {
                    view.setImageResource(errorImageResId);
                }
            }
        };
    }

    public ImageContainer get(String requestUrl, ImageListener imageListener,
                               int maxWidth, int maxHeight, ScaleType scaleType) {
        // 判断当前方法是否在UI线程中执行.如果不是,则抛出异常.
        throwIfNotOnMainThread();

        final String cacheKey = getCacheKey(requestUrl, maxWidth, maxHeight, scaleType);

        // 从L1级缓存中根据key获取对应的Bitmap.
        Bitmap cacheBitmap = mCache.getBitmap(cacheKey);
        if (cacheBitmap != null) {
            // L1缓存命中,通过缓存命中的Bitmap构造ImageContainer,并调用imageListener的响应成功接口.
            ImageContainer container = new ImageContainer(cacheBitmap, requestUrl, null, null);
            // 注意:因为目前是在UI线程中,因此这里是调用onResponse方法,并非回调.
            imageListener.onResponse(container, true);
            return container;
        }

        ImageContainer imageContainer =
                new ImageContainer(null, requestUrl, cacheKey, imageListener);
        // L1缓存命中失败,则先需要对ImageView设置默认图片.然后通过子线程拉取网络图片,进行显示.
        imageListener.onResponse(imageContainer, true);

        // 检查cacheKey对应的ImageRequest请求是否正在运行.
        BatchedImageRequest request = mInFlightRequests.get(cacheKey);
        if (request != null) {
            // 相同的ImageRequest正在运行,不需要同时运行相同的ImageRequest.
            // 只需要将其对应的ImageContainer加入到BatchedImageRequest的mContainers集合中.
            // 当正在执行的ImageRequest结束后,会查看当前有多少正在阻塞的ImageRequest,
            // 然后对其mContainers集合进行回调.
            request.addContainer(imageContainer);
            return imageContainer;
        }

        // L1缓存没命中,还是需要构造ImageRequest,通过RequestQueue的调度来获取网络图片
        // 获取方法可能是:L2缓存(ps:Disk缓存)或者HTTP网络请求.
        Request<Bitmap> newRequest =
                makeImageRequest(requestUrl, maxWidth, maxHeight, scaleType, cacheKey);
        mRequestQueue.add(newRequest);
        mInFlightRequests.put(cacheKey, new BatchedImageRequest(newRequest, imageContainer));

        return imageContainer;
    }

    /** 构造L1缓存的key值. */
    private String getCacheKey(String url, int maxWidth, int maxHeight, ScaleType scaleType) {
        return new StringBuilder(url.length() + 12).append("#W").append(maxWidth)
                .append("#H").append(maxHeight).append("#S").append(scaleType.ordinal()).append(url)
                .toString();
    }

    public boolean isCached(String requestUrl, int maxWidth, int maxHeight) {
        return isCached(requestUrl, maxWidth, maxHeight, ScaleType.CENTER_INSIDE);
    }

    private boolean isCached(String requestUrl, int maxWidth, int maxHeight, ScaleType scaleType) {
        throwIfNotOnMainThread();

        String cacheKey = getCacheKey(requestUrl, maxWidth, maxHeight, scaleType);
        return mCache.getBitmap(cacheKey) != null;
    }


    /** 当L1缓存没有命中时,构造ImageRequest,通过ImageRequest和RequestQueue获取图片. */
    protected Request<Bitmap> makeImageRequest(final String requestUrl, int maxWidth, int maxHeight,
                                               ScaleType scaleType, final String cacheKey) {
        return new ImageRequest(requestUrl, new Response.Listener<Bitmap>() {
            @Override
            public void onResponse(Bitmap response) {
                onGetImageSuccess(cacheKey, response);
            }
        }, maxWidth, maxHeight, scaleType, Bitmap.Config.RGB_565, new Response.ErrorListener() {
            @Override
            public void onErrorResponse(VolleyError error) {
                onGetImageError(cacheKey, error);
            }
        });
    }

    /** 图片请求失败回调.运行在UI线程中. */
    private void onGetImageError(String cacheKey, VolleyError error) {
        BatchedImageRequest request = mInFlightRequests.remove(cacheKey);
        if (request != null) {
            request.setError(error);
            batchResponse(cacheKey, request);
        }
    }

    /** 图片请求成功回调.运行在UI线程中. */
    protected void onGetImageSuccess(String cacheKey, Bitmap response) {
        // 增加L1缓存的键值对.
        mCache.putBitmap(cacheKey, response);

        // 同一时间内最初的ImageRequest执行成功后,回调这段时间阻塞的相同ImageRequest对应的成功回调接口.
        BatchedImageRequest request = mInFlightRequests.remove(cacheKey);
        if (request != null) {
            request.mResponseBitmap = response;
            // 将阻塞的ImageRequest进行结果分发.
            batchResponse(cacheKey, request);
        }
    }

    private void batchResponse(String cacheKey, BatchedImageRequest request) {
        mBatchedResponses.put(cacheKey, request);
        if (mRunnable == null) {
            mRunnable = new Runnable() {
                @Override
                public void run() {
                    for (BatchedImageRequest bir :  mBatchedResponses.values()) {
                        for (ImageContainer container : bir.mContainers) {
                            if (container.mListener == null) {
                                continue;
                            }

                            if (bir.getError() == null) {
                                container.mBitmap = bir.mResponseBitmap;
                                container.mListener.onResponse(container, false);
                            } else {
                                container.mListener.onErrorResponse(bir.getError());
                            }
                        }
                    }
                    mBatchedResponses.clear();
                    mRunnable = null;
                }
            };
            // Post the runnable
            mHandler.postDelayed(mRunnable, 100);
        }
    }

    private void throwIfNotOnMainThread() {
        if (Looper.myLooper() != Looper.getMainLooper()) {
            throw new IllegalStateException("ImageLoader must be invoked from the main thread.");
        }
    }

    /** 抽象出请求成功和失败的回调接口.默认可以使用Volley提供的ImageListener. */
    public interface ImageListener extends Response.ErrorListener {
        void onResponse(ImageContainer response, boolean isImmediate);
    }

    /** 网络图片请求的承载对象. */
    public class ImageContainer {
        /** ImageView需要加载的Bitmap. */
        private Bitmap mBitmap;

        /** L1缓存的key */
        private final String mCacheKey;

        /** ImageRequest请求的url. */
        private final String mRequestUrl;

        /** 图片请求成功或失败的回调接口类. */
        private final ImageListener mListener;

        public ImageContainer(Bitmap bitmap, String requestUrl, String cacheKey,
                              ImageListener listener) {
            mBitmap = bitmap;
            mRequestUrl = requestUrl;
            mCacheKey = cacheKey;
            mListener = listener;

        }

        public void cancelRequest() {
            if (mListener == null) {
                return;
            }

            BatchedImageRequest request = mInFlightRequests.get(mCacheKey);
            if (request != null) {
                boolean canceled = request.removeContainerAndCancelIfNecessary(this);
                if (canceled) {
                    mInFlightRequests.remove(mCacheKey);
                }
            } else {
                request = mBatchedResponses.get(mCacheKey);
                if (request != null) {
                    request.removeContainerAndCancelIfNecessary(this);
                    if (request.mContainers.size() == 0) {
                        mBatchedResponses.remove(mCacheKey);
                    }
                }
            }
        }

        public Bitmap getBitmap() {
            return mBitmap;
        }

        public String getRequestUrl() {
            return mRequestUrl;
        }
    }

    /** * CacheKey相同的ImageRequest请求抽象类. * 判定两个ImageRequest相同包括: * 1. url相同. * 2. maxWidth和maxHeight相同. * 3. 显示的scaleType相同. * 同一时间可能有多个相同CacheKey的ImageRequest请求,由于需要返回的Bitmap都一样,所以用BatchedImageRequest * 来实现该功能.同一时间相同CacheKey的ImageRequest只能有一个. * 为什么不使用RequestQueue的mWaitingRequestQueue来实现该功能? * 答:是因为仅靠URL是没法判断两个ImageRequest相等的. */
    private class BatchedImageRequest {
        /** 对应的ImageRequest请求. */
        private final Request<?> mRequest;

        /** 请求结果的Bitmap对象. */
        private Bitmap mResponseBitmap;

        /** ImageRequest的错误. */
        private VolleyError mError;

        /** 所有相同ImageRequest请求结果的封装集合. */
        private final LinkedList<ImageContainer> mContainers = new LinkedList<ImageContainer>();

        public BatchedImageRequest(Request<?> request, ImageContainer container) {
            mRequest = request;
            mContainers.add(container);
        }

        public VolleyError getError() {
            return mError;
        }

        public void setError(VolleyError error) {
            mError = error;
        }

        public void addContainer(ImageContainer container) {
            mContainers.add(container);
        }

        public boolean removeContainerAndCancelIfNecessary(ImageContainer container) {
            mContainers.remove(container);
            if (mContainers.size() == 0) {
                mRequest.cancel();
                return true;
            }
            return false;
        }
    }
}

重大疑问

个人对Imageloader的源码有两个重大疑问?

  • batchResponse方法的实现.

我很奇怪,为什么ImageLoader类里面要有一个HashMap来保存BatchedImageRequest集合呢?

    private final HashMap<String, BatchedImageRequest> mBatchedResponses =
            new HashMap<String, BatchedImageRequest>();

毕竟batchResponse是在特定的ImageRequest执行成功的回调中被调用的,调用代码如下:

    protected void onGetImageSuccess(String cacheKey, Bitmap response) {
        // 增加L1缓存的键值对.
        mCache.putBitmap(cacheKey, response);

        // 同一时间内最初的ImageRequest执行成功后,回调这段时间阻塞的相同ImageRequest对应的成功回调接口.
        BatchedImageRequest request = mInFlightRequests.remove(cacheKey);
        if (request != null) {
            request.mResponseBitmap = response;
            // 将阻塞的ImageRequest进行结果分发.
            batchResponse(cacheKey, request);
        }
    }

从上述代码可以看出,ImageRequest请求成功后,已经从mInFlightRequests中获取了对应的BatchedImageRequest对象.而同一时间被阻塞的相同的ImageRequest对应的ImageContainer都在BatchedImageRequest的mContainers集合中.
那我认为,batchResponse方法只需要遍历对应BatchedImageRequest的mContainers集合即可.
但是,ImageLoader源码中,我认为多余的构造了一个HashMap对象mBatchedResponses来保存BatchedImageRequest集合,然后在batchResponse方法中又对集合进行两层for循环各种遍历,实在是非常诡异,求指导.
诡异代码如下:

    private void batchResponse(String cacheKey, BatchedImageRequest request) {
        mBatchedResponses.put(cacheKey, request);
        if (mRunnable == null) {
            mRunnable = new Runnable() {
                @Override
                public void run() {
                    for (BatchedImageRequest bir :  mBatchedResponses.values()) {
                        for (ImageContainer container : bir.mContainers) {
                            if (container.mListener == null) {
                                continue;
                            }

                            if (bir.getError() == null) {
                                container.mBitmap = bir.mResponseBitmap;
                                container.mListener.onResponse(container, false);
                            } else {
                                container.mListener.onErrorResponse(bir.getError());
                            }
                        }
                    }
                    mBatchedResponses.clear();
                    mRunnable = null;
                }
            };
            // Post the runnable
            mHandler.postDelayed(mRunnable, 100);
        }
    }

我认为的代码实现应该是:

    private void batchResponse(String cacheKey, BatchedImageRequest request) {
        if (mRunnable == null) {
            mRunnable = new Runnable() {
                @Override
                public void run() {
                    for (ImageContainer container : request.mContainers) {
                        if (container.mListener == null) {
                            continue;
                        }

                        if (request.getError() == null) {
                            container.mBitmap = request.mResponseBitmap;
                            container.mListener.onResponse(container, false);
                        } else {
                            container.mListener.onErrorResponse(request.getError());
                        }
                    }
                    mRunnable = null;
                }
            };
            // Post the runnable
            mHandler.postDelayed(mRunnable, 100);
        }
    }
  • 使用ImageLoader默认提供的ImageListener,我认为存在一个缺陷,即图片闪现问题.当为ListView的item设置图片时,需要增加TAG判断.因为对应的ImageView可能已经被回收利用了.

自定义L1缓存类

首先说明一下,所谓的L1和L2缓存分别指的是内存缓存和硬盘缓存.
实现L1缓存,我们可以使用Android提供的Lru缓存类,示例代码如下:

import android.graphics.Bitmap;
import android.support.v4.util.LruCache;

/** Lru算法的L1缓存实现类. */
@SuppressWarnings("unused")
public class ImageLruCache implements ImageLoader.ImageCache {
    private LruCache<String, Bitmap> mLruCache;

    public ImageLruCache() {
        this((int) Runtime.getRuntime().maxMemory() / 8);
    }

    public ImageLruCache(final int cacheSize) {
        createLruCache(cacheSize);
    }

    private void createLruCache(final int cacheSize) {
        mLruCache = new LruCache<String, Bitmap>(cacheSize) {
            @Override
            protected int sizeOf(String key, Bitmap value) {
                return value.getRowBytes() * value.getHeight();
            }
        };
    }

    @Override
    public Bitmap getBitmap(String url) {
        return mLruCache.get(url);
    }

    @Override
    public void putBitmap(String url, Bitmap bitmap) {
        mLruCache.put(url, bitmap);
    }
}

你可能感兴趣的:(github,android,Volley)