OpenCV中C++的RNG类可以压缩一个64位的i整数并可以得到scalar和array的随机数。目前的版本支持均匀分布随机数和Gaussian分布随机数。随机数的产生采用的是Multiply-With-Carry算法和Ziggurat算法。其构造函数的初始化可以传入一个64位的整型参数作为随机数产生器的初值。next可以取出下一个随机数,uniform函数可以返回指定范围的随机数,gaussian函数返回一个高斯随机数,fill则用随机数填充矩阵等等。
以下测试程序分别测试了RNG类中各个函数的用法以及解释了各个参数的意思,重点都在注释里。此外测试程序后半部分也大概介绍了c版本的随机数产生器,如cvRNG、cvRandArr、cvRandInt、cvRandReal等。由于理解还能力有限,个别函数还是不太清楚。
实验环境:VS2010 + OpenCV2.4.9.0
#include <iostream> #include "cv.h" #include "highgui.h" using namespace cv; using namespace std; int main(int argc,char** argv) { RNG rng; // always produces 0 //RNG::uniform(int,int) //因为只会去整数,所以只产生0 double a = rng.uniform(0,1); //produces double from[0,1) double a1 = rng.uniform((double)0,(double)1); //produces float from[0,1) double b = rng.uniform(0.f,1.f); //produces double from[0,1) double c = rng.uniform(0.,1.); //may cause compiler error because of ambiguity: //RNG:: uniform(0,(int)0.999999) ? or RNG::unigorm((double)0,0.999999) //double d = rng.uniform(0,0.999999);所以先注释起来吧 O(∩_∩)O cout << "a = " << a << endl; cout << "a1 = " << a1 << endl; cout << "b = " << b << endl; cout << "c = " << c << endl; //cout << "d = " << d << endl; /*-------- returns the next random number sampled from the Gaussian distribution------- * double RNG:: gaussian( double sigma) * sigma – standard deviation(标准差) of the distribution ------------------------------------------------------------------------------------*/ double g = rng.gaussian(2); cout << "g = " << g << endl; /*-------- returns the next random number(还不理解这个“下一个”是指什么?) ------------------- * unsigned int RNG:: next() * The method updates the state using the MWC algorithm and returns the next 32-bit random number ------------------------------------------------------------------------------------*/ int n = rng.next(); cout << "n = " << n << endl; /*-------- RNG::operator T returns the next random number of the specified type --------- * RNG:: operator uchar() * RNG:: operator schar() * RNG:: operator ushort() * RNG:: operator short int() * RNG:: operator int() * RNG:: operator unsigned int() * RNG:: operator float() * RNG:: operator double() * 返回指定类型的下一个随机数。对于int型,返回可用数据类型范围内的随机数,对于float型, 返回[0,1)范围的随机数 ------------------------------------------------------------------------------------*/ int n1 = rng.operator int(); cout << "n1 = " << n1 << endl; float f = rng.operator float(); cout << "f = " << f << endl; /*-------- RNG::operator () returns the next random number ----------------------- * unsigned int RNG:: operator() () == RNG::next() 两个函数相同 * unsigned int RNG:: operator() (unsigned int N) 注意括号 * return the result in the range [0,N) ------------------------------------------------------------------------------------*/ int o = rng.operator ()(); int o1 = rng.operator() (50); cout << "o = " << o << endl << "o1 = " << o1 << endl; /*---------------------- fills arrays with random numbers.------------------------ * void RNG:: fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false )函数原型 * mat – 2D or N-dimensional matrix; currently matrices with more than 4 channels are not supported by the methods, use Mat::reshape() as a possible workaround 说明了输入矩阵的形式,目前尚不支持4通道以上的矩阵,如果超过了,需要调用reshape()函数 进行变更 * distribution type, RNG::UNIFORM or RNG::NORMAL 分布的类型(均匀或高斯) * a – first distribution parameter; in case of the uniform distribution, this is an inclusive lower boundary, in case of the normal distribution, this is a mean value 当为均匀分布时,a为下界(闭区间),当为高斯分布时,表示均值 * b – second distribution parameter; in case of the uniform distribution, this is a non-inclusive upper boundary, in case of the normal distribution, this is a standard deviation (diagonal of the standard deviation matrix or the full standard deviation matrix) 当为均匀分布时,a为上界(开区间),当为高斯分布时,表示标准差 * saturateRange – pre-saturation flag; for uniform distribution only; if true, the method will first convert a and b to the acceptable value range (according to the mat datatype) and then will generate uniformly distributed random numbers within the range [saturate(a), saturate(b)) , if saturateRange=false, the method will generate uniformly distributed random numbers in the original range [a, b) and then will saturate them, it means, for example, that theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX) will likely produce array mostly filled with 0’s and 255’s, since the range (0, 255) is significantly smaller than [-DBL_MAX, DBL_MAX) 意思是:此变量只针对均匀分布有效。当为真的时候,会先把产生随机数的范围变换到数据类型的范围, 再产生随机数;如果为假,会先产生随机数,再进行截断到数据类型的有效区间。请看以下fillM1和 fillM2的例子并观察结果 ------------------------------------------------------------------------------------*/ Mat_<int>fillM(3,3); rng.fill(fillM,RNG::UNIFORM,1,1000); cout << "filM = " << fillM << endl << endl; Mat fillM1(3,3,CV_8U); rng.fill(fillM1,RNG::UNIFORM,1,1000,TRUE); cout << "filM1 = " << fillM1 << endl << endl; //fillM1产生的数据都在[0,,255)内,且小于255; //fillM2产生的数据虽然也在同样范围内,但是由于用了截断操作,所以很多数据都是255, //因为CV_8U的有效范围就是0~255 //所以我认为最好的方式就是事先想好需要的数据类型和范围,再设置为FALSE(默认值) Mat fillM2(3,3,CV_8U); rng.fill(fillM2,RNG::UNIFORM,1,1000,FALSE); cout << "filM2 = " << fillM2 << endl << endl; /*------- uniformly-distributed random number or an array of random numbers---- * randu(dst, low, high) * dst – output array of random numbers; * low – inclusive lower boundary of the generated random numbers; * high - exclusive upper boundary of the generated random numbers; -----------------------------------------------------------------------------*/ Mat_<int>randuM(3,3); randu(randuM,Scalar(0),Scalar(255)); cout << "randuM = " << randuM << endl << endl; /*---------------normally distributed random numbers------------------- * randn(dst, mean, stddev)(也叫高斯分布) * dst – output array of random numbers; the array must be pre-allocated and have 1 to 4 channels; * mean(均值) – mean value (expectation) of the generated random numbers * stddev - standard deviation(标准差) of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix -----------------------------------------------------------------------------*/ Mat_<int>randnM(3,3); randn(randnM,0,1); cout << "randnM = " << randnM << endl << endl; /*-----------------Shuffles the array elements randomly(产生随机打乱的矩阵)--------------- * randShuffle( InputOutputArray dst, double iterFactor=1., RNG* rng=0 ) * dst - input/output numerical 1D array; * iterFactor - scale factor that determines the number of random swap operations; * rng - optional random number generator used for shuffling; if it is zero, theRNG()() is used instead; * The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be dst.rows*dst.cols*iterFactor -----------------------------------------------------------------------------*/ Mat_<int>randShufM(4,1); randShuffle(randShufM,1,0); cout << "randShufM = " << randShufM << endl << endl; //还不太会用... /*------------------------下面介绍一下C版的随机数产生器的相关函数---------------*/ /*------- initializes a random number generator state(初始化随机数生成器状态)----- * CvRNG cvRNG( int64 seed=-1) 函数原型 * seed – 64-bit value used to initiate a random sequence 64-bit的值用来初始化随机序列; 函数 cvRNG 初始化随机数生成器并返回其状态。 指向这个状态的指针可以传递给函数 cvRandInt, cvRandReal 和 cvRandArr; 在通常的实现中使用一个 multiply-with-carry generator C++版本中的RNG已经代替了CvRNG -----------------------------------------------------------------------------*/ //CvRNG rng1 = cvRNG(-1); CvRNG cvRNG; /*------- fills an array with random numbers and updates the RNG state------- * void cvRandArr( CvRNG* rng, CvArr* arr, int dist_type, CvScalar param1, CvScalar param2)函数原型 * rng – CvRNG state initialized by RNG()被 cvRNG 初始化的 RNG 状态 * arr – The destination array * dist_type – Distribution type - CV_RAND_UNI uniform distribution - CV_RAND_NORMAL normal or Gaussian distribution * param1 – The first parameter of the distribution. In the case of a uniform distribution it is the inclusive lower boundary of the random numbers range. In the case of a normal distribution it is the mean value of the random numbers 如果是均匀分布它是随机数范围的闭下边界;如果是正态分布它是随机数的平均值 * param2 – The second parameter of the distribution. In the case of a uniform distribution it is the exclusive upper boundary of the random numbers range. In the case of a normal distribution it is the standard deviation of the random numbers 如果是均匀分布它是随机数范围的开上边界;如果是正态分布它是随机数的标准差 -----------------------------------------------------------------------------*/ CvMat* cvM = cvCreateMat(3,3,CV_16U); cvRandArr(&cvRNG,cvM,CV_RAND_UNI,cvScalarAll(0),cvScalarAll(255)); cout << "cvM = " << cvM << endl << endl; //这里输出有点奇怪,明明定义的是矩阵,却输出的一串数字,不理解? /*------- returns a 32-bit unsigned integer and updates RNG------- * unsigned int cvRandInt( CvRNG* rng)函数原型 * rng – CvRNG state initialized by RNG() 函数 cvRandInt 返回均匀分布的随机 32-bit 无符号整型值并更新 RNG 状态; 它和 C 运行库里面的 rand() 函数十分相似,但是它产生的总是一个 32-bit 数而 rand() 返回一个 0 到 RAND_MAX(它是 2**16 或者 2**32, 依赖于操作平台)之间的数 -----------------------------------------------------------------------------*/ int cvInt = cvRandInt(&cvRNG); cout << "cvInt = " << cvInt << endl; /*------- returns a floating-point random number and updates RNG.------- * double cvRandReal( CvRNG* rng)函数原型 * rng – RNG state initialized by RNG() 函数 cvRandReal 返回均匀分布的随机浮点数,范围在 0~1 之间 (不包括1) -----------------------------------------------------------------------------*/ double cvDouble = cvRandReal(&cvRNG); cout << "cvDouble = " << cvDouble << endl; system("pause"); return 0; }以下是结果:各个输出的变量名相互对应
同时也可以看到fillM1和fillM2之间的区别。
以下给出RNG类在OpenCV中源代码:
/*! Random Number Generator The class implements RNG using Multiply-with-Carry algorithm */ class CV_EXPORTS RNG { public: enum { UNIFORM=0, NORMAL=1 }; RNG();//默认构造函数 // inline RNG::RNG() { state = 0xffffffff; } RNG(uint64 state);//带参数的构造函数,接受一个64位无符号的值。 //inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } //! updates the state and returns the next 32-bit unsigned integer random number unsigned next(); /* inline unsigned RNG::next() { state = (uint64)(unsigned)state*CV_RNG_COEFF + (unsigned)(state >> 32); return (unsigned)state; } #define CV_RNG_COEFF 4164903690U 用两个很大的无符号数相乘,乘积结果要转换为64位无符号数,转换的时候两个乘数应该向高精度看起,所以应该也先转换为64位再相乘。把state右移32位得到一个数,把这两个数相加。函数返回一个32位的无符号数,其值为截断前面求得的和。 */ //以下几个函数是从类到uchar.schar,ushort,short,usinged的显示转换函数 operator uchar();//返回一个8位无符号类型的随机数,把next返回的数截断 //inline RNG::operator uchar() { return (uchar)next(); } operator schar();//返回一个8为有符号类型的随机数。???会产生负数吗,返回的也是截断的next返回值。莫非是截断后得到的最高位作为符号位,这样也可能是随机的。??? //inline RNG::operator schar() { return (schar)next(); } operator ushort();//返回一个无符号16为整数 //inline RNG::operator ushort() { return (ushort)next(); } operator short();//返回一个有符号16为整数 // inline RNG::operator short() { return (short)next(); } operator unsigned();//返回一个无符号32为整数 // inline RNG::operator unsigned() { return next(); } //! returns a random integer sampled uniformly from [0, N). unsigned operator ()(unsigned N);//重载括号操作符,带参数。在(0,N)之间返回一个整数,调用uniform成员函数 //inline unsigned RNG::operator ()(unsigned N) {return (unsigned)uniform(0,N);} unsigned operator ()();//重载括号操作符,无参数。直接返回next结果。 // inline unsigned RNG::operator ()() {return next();} //放在这个位置有点奇怪,为什么不和前边同类放一起呢?放回一个带符//号32为整数 operator int(); // inline RNG::operator int() { return (int)next(); } //返回一个float型(具体多少位看平台)数。 operator float(); // inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } //两个数按位或一下 operator double(); /* inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next())*5.4210108624275221700372640043497e-20; }*/ //! returns uniformly distributed integer random number from [a,b) range int uniform(int a, int b);//[a,b)内随机产生一个int型值,均匀分布 // inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next()%(b - a) + a); } //! returns uniformly distributed floating-point random number from [a,b) range float uniform(float a, float b); //[a,b)内随机产生一个float型值,均匀分布 // inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } //! returns uniformly distributed double-precision floating-point random number from [a,b) range double uniform(double a, double b); //[a,b)内随机产生一个double型值,均匀分布 // inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false );//这个函数实现很长,暂时略过。 //! returns Gaussian random variate with mean zero. double gaussian(double sigma);//返回均值为0的高斯随机变量, /*double RNG::gaussian(double sigma) { float temp; randn_0_1_32f( &temp, 1, &state ); return temp*sigma; }*/ uint64 state;//种子,next中需要这样一个初始值 };
#include <iostream> #include "cv.h" #include "highgui.h" using namespace std; using namespace cv; const char wndName[] = "randDraw"; const int randNumber = 100; static Scalar randomColor(RNG& rng) { int rColor = (unsigned)rng; //颜色是用RGB三通道表示,因此上面函数中颜色参数的类型都是Scalar类型 //将随机数的值取出分别作为RGB三个通道的颜色值 return Scalar(rColor & 0xFF,(rColor >> 8) & 0xFF,(rColor >> 16) & 0xFF); } int main(int argc,char** argv) { //抗锯齿,平滑线 //改为8就不是咯~ int lineType = CV_AA; int width = 1000; int height = 700; int x1 = - width/2; int x2 = 3 * width/2; int y1 = - height/2; int y2 = 3 * height/2; const int DELAY = 10; //0xFFFFFFFF表示初始的随机值 //RNG rng(0xFFFFFFFF); RNG rng; Mat image = Mat::zeros(height,width,CV_8UC3); imshow(wndName,image); waitKey(DELAY); for(int i = 0;i < randNumber;i++) { Point pt1; Point pt2; pt1.x = rng.uniform(x1,x2); pt1.y = rng.uniform(y1,y2); pt2.x = rng.uniform(x1,x2); pt2.y = rng.uniform(y1,y2); /*----------------------draws a line segment connecting two points----------- * void line( Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=8, int shift=0)函数原型 * lineType – Type of the line: – 8 (or omitted) - 8-connected line. – 4 - 4-connected line. – CV_AA - antialiased line. -----------------------------------------------------------------------------*/ line(image,pt1,pt2,randomColor(rng),rng.uniform(1,10),lineType); } imshow(wndName,image); waitKey(0); for(int i = 0;i < randNumber;i++) { Point org; org.x = rng.uniform(x1,x2); org.y = rng.uniform(y1,y2); /*-------------------------draws a text string-------------------------------- * void putText(Mat& img, const string& text, Point org, int fontFace, double fontScale, Scalar color,int thickness=1, int lineType=8, bool bottomLeftOrigin=false )函数原型 * img – image * text – Text string to be drawn * org – Bottom-left corner of the text string in the image. * font – CvFont structure initialized using InitFont() C版本的参数 * fontFace – Font type. One of FONT_HERSHEY_SIMPLEX, FONT_HERSHEY_PLAIN, FONT_HERSHEY_DUPLEX, FONT_HERSHEY_COMPLEX, FONT_HERSHEY_TRIPLEX, FONT_HERSHEY_COMPLEX_SMALL, FONT_HERSHEY_SCRIPT_SIMPLEX, or FONT_HERSHEY_SCRIPT_COMPLEX, where each of the font ID’s can be combined with FONT_HERSHEY_ITALIC to get the slanted letters * fontScale – Font scale factor that is multiplied by the font-specific base size * color – Text color * thickness – Thickness of the lines used to draw a text * lineType – Line type. See the line for details * bottomLeftOrigin – When true, the image data origin is at the bottom-left corner; Otherwise, it is at the top-left corner.如果为真,图像原点在左下角,否则在左上角 -----------------------------------------------------------------------------*/ putText(image,"OpenCV",org,rng.uniform(0,8),rng.uniform(0,10)*0.5 + 0.1, randomColor(rng),rng.uniform(1,10),lineType,FALSE); } imshow(wndName,image); waitKey(0); return 0; }以下是测试结果:
最后,再列出一个OpenCV自带Demo,我稍微对函数进行了注释。主要是为了练习使用随机数生成器和如何使用OpenCV画图。
#include <iostream> #include "cv.h" #include "highgui.h" using namespace std; using namespace cv; static void help() { cout << "This program demonstrates OpenCV drawing and text output functions" << endl << "Usage:" << endl <<"./drawing" << endl; } static Scalar randomColor(RNG& rng) { int iColor = unsigned(rng); //255 = 0xFF return Scalar(iColor & 255,(iColor >> 8) & 255,(iColor >> 16) & 255); } int main(int argc,char** argv) { help(); char wndName[] = "Drawing Demo"; const int randomNumber = 100; const int DELAY = 10; int lineType = CV_AA; int height = 700; int width = 1000; int x1 = - width/2; int x2 = 3 * width/2; int y1 = - height/2; int y2 = 3 * height/2; RNG rng(0xFFFFFFFF); Mat image = Mat::zeros(height,width,CV_8UC3); imshow(wndName,image); waitKey(DELAY); //draw line for(int i = 0;i < randomNumber;i++) { Point pt1,pt2; pt1.x = rng.uniform(x1,x2); pt1.y = rng.uniform(y1,y2); pt2.x = rng.uniform(x1,x2); pt2.y = rng.uniform(y1,y2); line(image,pt1,pt2,randomColor(rng),rng.uniform(1,10),lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } //draw rectangle for(int i = 0;i < randomNumber;i++) { Point pt1,pt2; pt1.x = rng.uniform(x1,x2); pt1.y = rng.uniform(y1,y2); pt2.x = rng.uniform(x1,x2); pt2.y = rng.uniform(y1,y2); int thickness = rng.uniform(-3,10); /*----------------------draws a simple, thick, or filled up-right rectangle----------- * C++: void rectangle(Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=8,int shift=0) * C++: void rectangle(Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=8, int shift=0) * img – image * pt1 – Vertex of the rectangle * pt2 – Vertex of the rectangle opposite to pt1 * rec – Alternative specification of the drawn rectangle * color – Rectangle color or brightness (grayscale image) * thickness – Thickness of lines that make up the rectangle. Negative values, like CV_FILLED, mean that the function has to draw a filled rectangle * lineType – Type of the line. See the line() description * shift – Number of fractional bits in the point coordinates -----------------------------------------------------------------------------*/ rectangle(image,pt1,pt2,randomColor(rng),MAX(thickness,-1),lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } //draw ellipse for(int i = 0; i < randomNumber;i++) { Point center; center.x = rng.uniform(x1,x2); center.y = rng.uniform(y1,y2); Size axes; axes.width = rng.uniform(0,200); axes.height = rng.uniform(0,200); double angle = rng.uniform(0,180); /*---------draws a simple or thick elliptic arc or fills an ellipse sector--------- * C++: void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle,double endAngle,const Scalar& color, int thickness=1, int lineType=8, int shift=0) * C++: void ellipse(Mat& img, const RotatedRect& box, const Scalar& color, int thickness=1, int lineType=8) * img – image * center – Center of the ellipse 椭圆中心 * axes – Half of the size of the ellipse main axes 椭圆长轴的一半 * angle – Ellipse rotation angle in degrees 椭圆旋转的角度 * startAngle – Starting angle of the elliptic arc in degrees 弧度开始的角度 * endAngle – Ending angle of the elliptic arc in degrees 弧度结束的角度 * box – Alternative ellipse representation via RotatedRect or CvBox2D This means that the function draws an ellipse inscribed in the rotated rectangle * color – Ellipse color * thickness – Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that a filled ellipse sector is to be drawn * lineType – Type of the ellipse boundary. See the line() description * shift – Number of fractional bits in the coordinates of the center and values of axes -----------------------------------------------------------------------------*/ ellipse(image,center,axes,angle,angle - 100,angle + 200,randomColor(rng),rng.uniform(1,8),lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } //draw polylines for(int i = 0;i < randomNumber;i++) { Point pt[2][3]; pt[0][0].x = rng.uniform(x1,x2); pt[0][0].y = rng.uniform(y1,y2); pt[0][1].x = rng.uniform(x1,x2); pt[0][1].y = rng.uniform(y1,y2); pt[0][2].x = rng.uniform(x1,x2); pt[0][2].y = rng.uniform(y1,y2); pt[1][0].x = rng.uniform(x1,x2); pt[1][0].y = rng.uniform(y1,y2); pt[1][1].x = rng.uniform(x1,x2); pt[1][1].y = rng.uniform(y1,y2); pt[1][2].x = rng.uniform(x1,x2); pt[1][2].y = rng.uniform(y1,y2); const Point* ppt[2] = {pt[0],pt[1]}; int npt[] = {3,3}; /*-------------------draws several polygonal curves---------------------------- * C++: void polylines(Mat& img, const Point** pts, const int* npts, int ncontours, bool isClosed, const Scalar& color, int thickness=1, int lineType=8, int shift=0 ) * C++: void polylines(InputOutputArray img, InputArrayOfArrays pts, bool isClosed, const Scalar& color,int thickness=1, int lineType=8, int shift=0 ) * img – image * pts – Array of polygonal curves 多边形曲线数组 * npts – Array of polygon vertex counters 顶点数组 * ncontours – Number of curves 曲线数量 * isClosed – Flag indicating whether the drawn polylines are closed or not If they are closed,the function draws a line from the last vertex of each curve to its first vertex 标志曲线是否闭合 * color – Polyline color * thickness – Thickness of the polyline edges * lineType – Type of the line segments. See the line() description * shift – Number of fractional bits in the vertex coordinates -----------------------------------------------------------------------------*/ polylines(image,ppt,npt,2,TRUE,randomColor(rng),rng.uniform(1,10),lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } //draw polygons with filled area for(int i = 0;i < randomNumber;i++) { Point pt[2][3]; pt[0][0].x = rng.uniform(x1, x2); pt[0][0].y = rng.uniform(y1, y2); pt[0][1].x = rng.uniform(x1, x2); pt[0][1].y = rng.uniform(y1, y2); pt[0][2].x = rng.uniform(x1, x2); pt[0][2].y = rng.uniform(y1, y2); pt[1][0].x = rng.uniform(x1, x2); pt[1][0].y = rng.uniform(y1, y2); pt[1][1].x = rng.uniform(x1, x2); pt[1][1].y = rng.uniform(y1, y2); pt[1][2].x = rng.uniform(x1, x2); pt[1][2].y = rng.uniform(y1, y2); const Point* ppt[2] = {pt[0], pt[1]}; int npt[] = {3, 3}; /*--------------fills the area bounded by one or more polygons--------------- * C++: void fillPoly( Mat& img, const Point** pts, const int* npts, int ncontours, const Scalar& color, int lineType=8, int shift=0, Point offset=Point() ) * img – image * pts – Array of polygons where each polygon is represented as an array of points * npts – Array of polygon vertex counters * ncontours – Number of contours that bind the filled region * color – Polygon color * lineType – Type of the polygon boundaries. See the line() description * shift – Number of fractional bits in the vertex coordinates * offset – Optional offset of all points of the contours -----------------------------------------------------------------------------*/ fillPoly(image, ppt, npt, 2, randomColor(rng), lineType); imshow(wndName, image); if(waitKey(DELAY) >= 0) return 0; } //draw circle for(int i = 0;i < randomNumber;i++) { Point center; center.x = rng.uniform(x1,x2); center.y = rng.uniform(y1,y2); /*-----------------------------draw a circle---------------------------------- * C++: void circle(Mat& img, Point center, int radius, const Scalar& color, int thickness=1, int lineType=8,int shift=0) * img – Image where the circle is drawn * center – Center of the circle * radius – Radius of the circle * color – Circle color * thickness – Thickness of the circle outline, if positive. Negative thickness means that a * filled circle is to be drawn * lineType – Type of the circle boundary. See the line() description * shift – Number of fractional bits in the coordinates of the center and in the radius value -----------------------------------------------------------------------------*/ circle(image,center,rng.uniform(0,300),randomColor(rng),rng.uniform(-1,9),lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } //put text on the image for(int i = 0;i < randomNumber;i++) { Point org; org.x = rng.uniform(x1,x2); org.y = rng.uniform(y1,y2); putText(image,"Testing text rendering",org,rng.uniform(0,8)/*font type*/, rng.uniform(0,100)*0.05 + 0.1/*font scale*/, randomColor(rng),rng.uniform(1,10)/*thickness*/,lineType); imshow(wndName,image); if(waitKey(DELAY) >= 0) return 0; } /*------------------calculates the width and height of a text string-------------- * C++: Size getTextSize( const string& text, int fontFace, double fontScale, int thickness, int* baseLine) * text – Input text string * fontFace – Font to use. See the putText() for details * fontScale – Font scale. See the putText() for details * thickness – Thickness of lines used to render the text * baseLine – Output parameter - y-coordinate of the baseline relative to the bottom-most text point. --------------------------------------------------------------------------------------*/ //string text = " OpenCV Forever!" ; //int fontFace = FONT_HERSHEY_COMPLEX; //double fontScale = 2; //int thickness = 3; //int baseline=0; //baseline += thickness; //Size textSize = getTextSize(text, fontFace, // fontScale, thickness, &baseline); Size textSize = getTextSize("OpenCV Forever!",FONT_HERSHEY_COMPLEX,3,5,0); Point org((width - textSize.width)/2,(height - textSize.height)/2); Mat image2; for(int i = 0;i < 255;i += 2) { image2 = image - Scalar::all(i); putText(image2,"OpenCV Forever!",org,FONT_HERSHEY_COMPLEX, 3,Scalar(i,i,255),5,lineType); imshow(wndName,image2); if(waitKey(DELAY) >= 0) return 0; } waitKey(); return 0; }