memcached,相信我们搞linux后端的农民工都知道!这里简单的分析一下memcached是如何处理大量并发的连接的。
如题,memcached是个单进程程序,单进程多线程的程序(linuxer可能会会心一笑,这不就是多进程嘛)。memcached底层是用的libevent来管理事件的,下面我们就来看看这个libevent的经典应用是如何运转的。其实一开始memcached是个正宗的单进程程序,其实使用了异步技术后基本能把cpu和网卡的性能发挥到极限了(这种情况下硬是多线程反而会使程序性能下降),只不过后来随着多核cpu的普及,为了榨光cpu的性能,引入多线程也是顺势而为。
memcached的源码结构非常简单,其中线程相关的代码基本都在Thread.c中。简单的说,memcached的众多线程就是个Master-Worker的模型,其中主线程负责接收连接,然后将连接分给各个worker线程,在各个worker线程中完成命令的接收,处理和返回结果。
OK,让我们从main函数开始,一步一步来。
main函数中,线程相关的代码基本就下面几行:
case't': //此处处理-t参数,设置线程数。 //注意下面的WARNING,线程数超过了cpu核的个数其实没有意义了,只会有负作用 settings.num_threads = atoi(optarg); if(settings.num_threads <= 0) { fprintf(stderr,"Number of threads must be greater than 0\n"); return1; } /* There're other problems when you get above 64 threads. * In the future we should portably detect # of cores for the * default. */ if(settings.num_threads > 64) { fprintf(stderr,"WARNING: Setting a high number of worker" "threads is not recommended.\n" " Set this value to the number of cores in" " your machine or less.\n"); } break; //此处调用线程初始化函数,main_base是主线程的libevent句柄, //由于libevent不支持多线程共享句柄,所以每个线程都有一个libevent句柄 /* start up worker threads if MT mode */ thread_init(settings.num_threads, main_base);
//worker线程结构体 typedef struct{ pthread_t thread_id; /* 线程ID */ structevent_base *base; /* 此线程的libevent句柄 */ structevent notify_event; /* 通知事件,主线程通过这个事件通知worker线程有新连接 */ intnotify_receive_fd; /* 通知事件关联的读fd,这和下面的notify_send_fd是一对管道,具体使用后面讲 */ intnotify_send_fd; /* 通知事件关联的写fd,后面讲 */ structthread_stats stats; /* 线程相关统计相信 */ structconn_queue *new_conn_queue; /* 由主线程分配过来还没来得及处理的连接(客户端)的队列 */ cache_t *suffix_cache; /* suffix cache */ } LIBEVENT_THREAD; //这是主线程的结构体,就比较简单了 //这个结构体的实例只有一个全局的dispatcher_thread typedef struct{ pthread_t thread_id; /* 主线程ID */ structevent_base *base; /* libevent句柄 */ } LIBEVENT_DISPATCHER_THREAD;下面进入线程初始化函数:
void thread_init(int nthreads,struct event_base *main_base) { int i; //先是初始化一堆锁 //这是主锁,用来同步key-value缓存的存取 pthread_mutex_init(&cache_lock, NULL); //这是缓存状态锁,用来同步memcached的一些统计数据的存取 pthread_mutex_init(&stats_lock, NULL); //这个锁是用来同步init_count(已初始化完的线程数)变量的存取 pthread_mutex_init(&init_lock, NULL); //这是用来通知所有线程都初始化完成的条件变量 pthread_cond_init(&init_cond, NULL); //这个锁是用来同步空闲连接链表的存取 pthread_mutex_init(&cqi_freelist_lock, NULL); cqi_freelist = NULL; //分配worker线程结构体内存 threads = calloc(nthreads,sizeof(LIBEVENT_THREAD)); if(! threads) { perror("Can't allocate thread descriptors"); exit(1); } //把主线程先设置好 dispatcher_thread.base = main_base; dispatcher_thread.thread_id = pthread_self(); //设置所有worker线程与主线程之间的管道 for(i = 0; i < nthreads; i++) { intfds[2]; if(pipe(fds)) { perror("Can't create notify pipe"); exit(1); } threads[i].notify_receive_fd = fds[0]; threads[i].notify_send_fd = fds[1]; //这个函数进行worker线程的初始化工作 //比如libevent句柄,连接队列等的初始化 setup_thread(&threads[i]); } //这里就是真正调用pthread_create创建线程的地方了 for(i = 0; i < nthreads; i++) { create_worker(worker_libevent, &threads[i]); } //主线程等所有的worker线程都跑起来了之后再跑后面的代码(接受连接) pthread_mutex_lock(&init_lock); while(init_count < nthreads) { pthread_cond_wait(&init_cond, &init_lock); } pthread_mutex_unlock(&init_lock); }
先看主线程,在thread_init返回(所有线程初始化完成)之后,main函数做了一些其他的初始化之后就调用了event_base_loop(main_base, 0);这个函数开始处理网络事件,接受连接了。在此之前,main函数在绑定监听端口的时候就已经把监听socket的事件加到了main_base中了(参看server_socket函数,不多说)。监听事件的回调函数是memcached中所有网络事件公用的回调函数event_handler,而这个event_handler也是基本什么都不干,直接又调用drive_machine,这个函数是由一个大大是switch组成的大状态机。这里就是memcached所有网络事件的处理中枢,我们来看看:
static void drive_machine(conn *c) { boolstop = false; intsfd, flags = 1; socklen_t addrlen; structsockaddr_storage addr; intnreqs = settings.reqs_per_event; intres; while(!stop) { switch(c->state) { //这个监听状态只有主线程的监听fd才会有,而主线程也就基本就这么一个状态 caseconn_listening: //到这,说明有新连接来了 //accept新连接 addrlen = sizeof(addr); if((sfd = accept(c->sfd, (structsockaddr *)&addr, &addrlen)) == -1) { if(errno== EAGAIN || errno== EWOULDBLOCK) { /* these are transient, so don't log anything */ stop = true; }elseif(errno== EMFILE) { if(settings.verbose > 0) fprintf(stderr,"Too many open connections\n"); accept_new_conns(false); stop = true; }else{ perror("accept()"); stop = true; } break; } //设置套接字非阻塞 if((flags = fcntl(sfd, F_GETFL, 0)) < 0 || fcntl(sfd, F_SETFL, flags | O_NONBLOCK) < 0) { perror("setting O_NONBLOCK"); close(sfd); break; } //将新连接分给worker线程 dispatch_conn_new(sfd, conn_new_cmd, EV_READ | EV_PERSIST, DATA_BUFFER_SIZE, tcp_transport); stop = true; break; //下面是worker线程的一些事件,此处略 caseconn_waiting: //... caseconn_read: //... } return; }
void dispatch_conn_new(int sfd,enum conn_states init_state, int event_flags, int read_buffer_size,enum network_transport transport) { //分配一个连接队列item,此item将会由主线程塞到worker线程的连接队列中 CQ_ITEM *item = cqi_new(); //RR轮询得到这个连接的目标线程 inttid = (last_thread + 1) % settings.num_threads; LIBEVENT_THREAD *thread= threads + tid; last_thread = tid; //初始化item item->sfd = sfd; item->init_state = init_state; item->event_flags = event_flags; item->read_buffer_size = read_buffer_size; item->transport = transport; //将item塞到worker线程的队列中 cq_push(thread->new_conn_queue, item); MEMCACHED_CONN_DISPATCH(sfd,thread->thread_id); //向worker线程的通知写fd中写一个字节,如此notify_receive_fd就会有一个字节可读 //这样worker线程的notify_event就会收到一个可读的事件 //memcached就是这样来达到线程间异步通知的目的,很tricky if(write(thread->notify_send_fd,"", 1) != 1) { perror("Writing to thread notify pipe"); } }
static void thread_libevent_process(int fd,short which,void *arg) { LIBEVENT_THREAD *me = arg; CQ_ITEM *item; charbuf[1]; //将主线程写入的一个字节读掉,一个字节代表一个连接 if(read(fd, buf, 1) != 1) if(settings.verbose > 0) fprintf(stderr,"Can't read from libevent pipe\n"); //将主线程塞到队列中的连接pop出来 item = cq_pop(me->new_conn_queue); if(NULL != item) { //初始化新连接,注册事件监听,回调到前面提到的event_handler上 conn *c = conn_new(item->sfd, item->init_state, item->event_flags, item->read_buffer_size, item->transport, me->base); if(c == NULL) { if(IS_UDP(item->transport)) { fprintf(stderr,"Can't listen for events on UDP socket\n"); exit(1); }else{ if(settings.verbose > 0) { fprintf(stderr,"Can't listen for events on fd %d\n", item->sfd); } close(item->sfd); } }else{ c->thread= me; } //回收item cqi_free(item); } }
memcached的这套多线程libevent机制几乎成了高性能服务器的一本教材。linux后端农民工必读。