转自:http://ilovers.sinaapp.com/doc/golang-specification.html
英语:http://golang.org/ref/speC
|
|
这是关于 Go 语言的一个参考手册。如果想了解更多信息或是其他文档的话,可以去http://golang.org查看。
Go 是一门通用的编程语言,并时刻将系统编程铭记于心。它是强类型语言,带有垃圾回收机制,而且语言内在地支持并发编程。 程序由包组成,包的性质允许高效地管理它们之间的依赖。已有的语言实现采用了传统的编译/链接模型,最终生成可执行的二进制代码。
Go 语言的语法紧凑,灰常有规则可循,可以很容易地被集成开发环境 (IDE)类的自动工具所分析。
后面的语法使用扩展的巴克斯-诺尔范式 (EBNF)进行描述:
Production = production_name "=" [ Expression ] "." . Expression = Alternative { "|" Alternative } . Alternative = Term { Term } . Term = production_name | token [ "…" token ] | Group | Option | Repetition . Group = "(" Expression ")" . Option = "[" Expression "]" . Repetition = "{" Expression "}" .
产生式由一些术语和下面的几个按优先级从低到高的操作符/运算符组成:
| 任选其一 () 一个整体 [] 可选/可有可无 (0 或是 1次) {} 重复多次 (0 到 n 次)
小写的产生式的名字通常用于表示一个词法单元/符号;非终结符一般用驼峰式命名。词法单元/符号我们使用双引号""
或是反向单引号``
括住或是引住。
a … b
这种形式代表的是从a
到b
可选的字符集合。省略号…
在本规范中也用于某些处的表示不完全枚举或是不再详细列出的代码分片。字符…
(不同于三个字符的...
),它不是 Go 语言的一个词法单元/符号。
源文件是用UTF-8编码的 Unicode 文本。文本并不是规范化的,所以,一个加重音的代码点不同于重音再加一个字符,后面的认为是两个字符。为了简化,本文档使用了并不是很规范的字符术语来指代源文本中的一个 Unicode 代码点。
每一个代码点都应该进行区分,比如说,大写字母和小写字母就是不同的字符。
实现限制: 为了和其他的工具兼容,一个编译器不允许在源文本中出现 NUL 字符(U+0000)。
下面是一些比较特殊的 Unicode 字符类:
newline = /* Unicode 代码点 U+000A */ . unicode_char = /* 除了 newline 之外的其他 Unicode 代码点 */ . unicode_letter = /* Unicode 代码点中归为 "字母" 的字符*/ . unicode_digit = /* Unicode 代码点中归为 "十进制数字" 的字符 */ .
在Unicode 标准 6.0中, 4.5 章节 "通用分类" 定义了一系列的分类。Go 会认为在这些分类中的 Lu, Ll, Lt, Lm, or Lo 是 Unicode 字符, Nd 是 Unicode 数字。
下划线_
(U+005F) 被认定为一个字母。
letter = unicode_letter | "_" . decimal_digit = "0" … "9" . octal_digit = "0" … "7" . hex_digit = "0" … "9" | "A" … "F" | "a" … "f" .
有两种形式的注释:
//
开始到这一行结束。一个行注释给人的感觉就是一个换行。/*
开始到*/
结束。块注释中如果有行注释的话,那么它像是换行;其他情况下,它像是空白。注释不能嵌套。
词法单元/符号是 Go 语言的词汇表。它们分为四类:标识符、关键字、操作符和分隔符。由空格 (U+0020)、水平制表符 (U+0009)、回车符(U+000D)和换行符 (U+000A)所组成的空白除了可能是用于组成符号之外,其他的时候用作分隔符,在分析阶段会被忽略掉。 还有就是,换行符或是页面结束可能导致分号的插入。在将代码文本分割成符号的过程中,下一个符号应该是能组成一个合法符号的最长字符序列。
正式语法使用分号";"
作为一些产生式的分隔符。 但是 Go 程序可以基于下面两条规则省略多数时候的分号:
当输入文本在被拆成了记号的时候,在一些情况下分号会自动被插入非空白行的尾部的记号流中去,但是需要这一行的最后一个记号是:
break
、 continue
、 fallthrough
,或是 return
++
、 --
, )
、 ]
,或是 }
")"
or "}"
前面的分号可能省略掉。为了反映通常的使用习惯,本文档中的代码例子通常使用这些规则而省略了分号。
标识符用来命名变量、类型等程序实体。一个标识符实际上就是一个或是多个字母/数字序列,不过第一个字符应该是字母而不能是数字。
identifier = letter { letter | unicode_digit } .
a _x9 ThisVariableIsExported αβ
有一些标识符是预声明的。
下面的关键字被保留了因而不能作为标识符使用:
break default func interface select case defer go map struct chan else goto package switch const fallthrough if range type continue for import return var
下面的一些字符序列被当做操作符/运算符、分隔符或是其他一些特殊的符号:
+ & += &= && == != ( ) - | -= |= || < <= [ ] * ^ *= ^= <- > >= { } / << /= <<= ++ = := , ; % >> %= >>= -- ! ... . : &^ &^=
一个整数值实际就是一串数字组成的整数常量。一个可选的前缀表明了这个整数值的基数:0
表示八进制, 0x
或者0X
代表十六进制。在十六进制表示中,a-f
或是A-F
表示数字 10 - 15。
int_lit = decimal_lit | octal_lit | hex_lit . decimal_lit = ( "1" … "9" ) { decimal_digit } . octal_lit = "0" { octal_digit } . hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } .
42 0600 0xBadFace 170141183460469231731687303715884105727
一个浮点值实际就是由十进制数字所组成的浮点常量。它有一个整数部分、小数点、小数部分和指数部分。整数部分和小数部分还是由十进制数字组成;指数部分是一个e
或是E
后面跟一个可选的有符号十进制指数。整数部分或是小数部分二者可以省略其一;小数点和指数部分也可以省略其一。
float_lit = decimals "." [ decimals ] [ exponent ] | decimals exponent | "." decimals [ exponent ] . decimals = decimal_digit { decimal_digit } . exponent = ( "e" | "E" ) [ "+" | "-" ] decimals .
0. 72.40 072.40 // == 72.40 2.71828 1.e+0 6.67428e-11 1E6 .25 .12345E+5
一个(纯)虚数是一个复数常量,只不过它只有虚数部分,而虚数部分是用十进制数字表示。它实际就是由一个浮点常量或是一个十进制整数后面跟一个小写的字母i
组成。
imaginary_lit = (decimals | float_lit) "i" .
0i 011i // == 11i 0.i 2.71828i 1.e+0i 6.67428e-11i 1E6i .25i .12345E+5i
一个分符值就是一个分符常量,实际上是一个能标识一个 Unicode 代码点的整数值。一个分符值用一个单引号引住的一个或是多个字符来表示;在引号中,除了单引号和换行是不允许的,其他的都可以。一个单引号引住的单个字符也表示这个字符本身的 Unicode 值,在用可变格式中使用反斜杠开始的多字节序列来表示值。
最简单地表示单个字符就是用单引号引住;因为 Go 源文本使用 UTF-8 编码的 Unicode字符,所以多个 UTF-8 字节可能只代表一个整数值。比如说,'a'
它就只有一个字节,表示字符a
(Unicode U+0061),值是0x61
;而'ä'
则用两个字节(0xc3
0xa4
)表示带分音的字符a
(U+00E4),值是0xe4
。
表示 ASCII 文本的时候可以使用反斜杠来转义值。有四种表示一个整数值,也是整数常量,的方法:\x
后面跟两个十六进制的数字,是两个,不能多也不能少;\u
后面跟四个十六进制数字;\U
后面跟八个十六进制数字;一个普通的反斜杠\
后面跟三个八进制数字。不管哪种形式表示,值都是这种表示所对应的字符的值。
尽管这些表示结果都是一个整数,但是它们之间却有着不同的表示范围。八进制的值能表示 0 到 255 之间的数。十六进制表示必须满足前面说的构造限制。使用\u
和\U
进行转移表示的 Unicode 代码点,在它们中有一些值是不合法的,特别是对于超过0x10FFFF
的和surrogate halves。
在反斜杠后面某些固定的字符代表一些特殊的值:
\a U+0007 响铃符 \b U+0008 后退符 \f U+000C form feed \n U+000A 换行符 \r U+000D 回车符 \t U+0009 水平制表符 \v U+000b 垂直制表符 \\ U+005c 反斜杠 \' U+0027 单引号 (只在分符值中才是合法的转义) \" U+0022 双引号 (只在字符串值中是合法的转义)
所有其他的在分符值中的以反斜杠开始的转义都是不合法的。
char_lit = "'" ( unicode_value | byte_value ) "'" . unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . byte_value = octal_byte_value | hex_byte_value . octal_byte_value = `\` octal_digit octal_digit octal_digit . hex_byte_value = `\` "x" hex_digit hex_digit . little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit hex_digit . escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
'a' 'ä' '本' '\t' '\000' '\007' '\377' '\x07' '\xff' '\u12e4' '\U00101234' 'aa' // illegal: too many characters '\xa' // illegal: too few hexadecimal digits '\0' // illegal: too few octal digits '\uDFFF' // illegal: surrogate half '\U00110000' // illegal: invalid Unicode code point
一个字符串值就是一系列的字符连接在一起的一个字符串常量。它有两种形式:一种是元字符串,一种是解释性字符串。
元字符串就是包括在两个方向单引号``
内的字符序列。在引号内,除了反向单引号外其他字符都可以包括。一个元字符串的值就是将引号内的所有字符都不加解释滴看成是字符(UTF-8 字符)而形成的字符串;比如说,不会将反斜杠看成特殊的字符;再者,里面可以包含换行符。元字符串中的回车符在字符串求值的过程中会被忽略掉。
解释性字符串是包括在双引号""
内的字符序列。双引号内不能包括换行,引号内文本会像分符值一样对反斜杠进行转义,当然限制也一样,就是\'
和\"
这里也是合法的。3 个八进制\
nnn或是两个十六进制\x
nn都是对单个字节的转移表示;而其他的转义形式都指的是(可能是多个字节的)UTF-8编码的单个字符。所以,在字符串值中的\377
和\xFF
都表示的是单个字节,值是0xFF
=255;而ÿ
、\u00FF
、\U000000FF
和两个字节0xc3
和0xbf
表示的\xc3\xbf
,其实都是对 UTF-8 字符 U+00FF 的表示。
string_lit = raw_string_lit | interpreted_string_lit . raw_string_lit = "`" { unicode_char | newline } "`" . interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
`abc` // 等同于 "abc" `\n \n` // 等同于 "\\n\n\\n" "\n" "" "Hello, world!\n" "日本語" "\u65e5本\U00008a9e" "\xff\u00FF" "\uD800" // illegal: surrogate half "\U00110000" // illegal: invalid Unicode code point
下面的例子的表示实际上是表示的一个东西:
"日本語" // UTF-8 文本 `日本語` // UTF-8 元字分符本 "\u65e5\u672c\u8a9e" // 明确的 Unicode 代码点 "\U000065e5\U0000672c\U00008a9e" // 明确的 Unicode 代码点 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // 明确的 Unicode 字节
如果源文本使用两个代码点表示一个字符,比如组合一个重音和一个字母,那么如果将这个字符放入到符文值中会有问题(因为它不是一个代码点),而如果放在字符串中它占据两个代码点。
常量有布尔常量、分符常量、整型常量、浮点常量、 复数常量,和字符串常量之分。 字符、整数、浮点数和复数常量统称数值常量。
常量值会出现在很多地方,比如文符值、整型值、浮点值、虚数值,或是字符串值、指代常量的表达式、常量表达式、常量结果的转换,或是一些内置函数比如unsafe.Sizeof
(可适用于任意类型)、cap
/len
(用于一些表达式)、real
/imag
(用于复数常量和虚数常量)的返回结果。布尔值可以用预声明的常量true
和false
表示,预声明的标识符iota也用来表示常量。
一般来说,复数常量是常量表达式的一种,所以,偶们在那里讨论。
数值常量表示任意精度的值,不会溢出。
常量可能是有类型的或是无类型的。值常量、true
、false
、iota
,和一些只包含无符号操作数的常量表达式都是无符号的。
一个常量可能明确地来自于常量声明或是某个转换,也可能隐式地出现在变量声明中,或是在一个表达式中被赋值或是作为操作数。如果一个常量不能用它对应的类型来表示,这么这就是个错误。比如说3.0
既可以当做整数也可以当做浮点数,然而2147483648.0
(等于1<<31
)可以是float32
、float64
或是uint32
类型,就是不能是int32
或是string
类型。
并没有常量能代表 IEEE-754 的无穷大和非数值这两个值,但是math
包中的Inf、NaN、IsInf、和IsNaN函数可以在运行时来返回或是测试这些值。
实现限制: 尽管我们说数值常量在语言中是任意精度的,但是一个编译器可能在实现的时候在内部只是用有限的精度来表示。不管怎么说,每一个实现必须满足:
这些需求适用于值常量和常量表达式的求值结果。
一种类型决定了一个值的可能的取值范围以及能对这个值所进行的操作。 一个类型由(可能要限定的)类型名(§类型声明)或是一个类型文字指定,它们本身又是由预声明的类型进行构造而得。
Type = TypeName | TypeLit | "(" Type ")" . TypeName = identifier | QualifiedIdent . TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | SliceType | MapType | ChannelType .
一些已经命名了的类型,比如布尔类型、数值类型和字符串类型,这些都是预声明好的。复合类型 — 比如数组、结构体、指针、函数、接口、分片、映射和管道类型 — 需要使用已有的类型进行构造。
所谓的一个变量的静态类型 (或是简单地说类型)就是它声明时候的类型。接口类型对应的变量有种特殊的动态类型之说,也就是说它的实际类型是在运行时候根据存的值所决定的。动态类型在程序执行的过程中类型可能改变,只要它对于接口定义时所指定的静态类型是可赋值的就可以。
每一个类型T
都有一个底层类型:如果类型T
本来就是个预定义类型或是普通类型,那么它对应的底层类型就是T
本身。否则,T
的底层类型就是它在T
它的类型声明时所指定的类型。
type T1 string type T2 T1 type T3 []T1 type T4 T3
string
、T1
和T2
的底层类型都是string
。而[]T1
、T3
和T4
的底层类型是[]T1
。
每一种类型都有其对应的方法集(§接口类型, §方法声明)。接口类型 的方法集就是它的接口。而任一其他类型,比如T
的方法集就是所有T
类型作为接收器的方法的集合。所有指针类型,比如*T
的方法集是*T
或是T
作为接收器的所有方法的集合,这也说明,指针的方法集包括它的基类型T
的方法集。适用于包含匿名字段的结构体的规则,偶们在结构体类型那里描述。在一个方法集中,每一个方法必须有唯一的方法名。
一个类型的方法集决定了这种类型实现的接口以及通过这种类型的接收器可以调用的方法。
布尔类型只能在预声明的常量true
和false
中取值,它对应的预声明类型是bool
。
数值 type包括整数值和浮点数值。预声明的与机器无关的数值类型有下面这些:
uint8 无符号的 8 位整数 (0 to 255) uint16 无符号的 16 位整数 (0 to 65535) uint32 无符号的 32 位整数 (0 to 4294967295) uint64 无符号的 64 位整数 (0 to 18446744073709551615) int8 带符号的 8 位整数 (-128 to 127) int16 带符号的 16 位整数 (-32768 to 32767) int32 带符号的 32 位整数 (-2147483648 to 2147483647) int64 带符号的 64 位整数 (-9223372036854775808 to 9223372036854775807) float32 IEEE-754 32 位浮点数 float64 IEEE-754 64 位浮点数 complex64 由 float32 实部和虚部所能组成的复数 complex128 由 float64 实部和虚部所能组成的复数 byte 和 uint8 一样 rune 和 int32 一样
一个有n位的整数意思是有n个比特位宽,并且采用二进制补码表示。
下面还有一些预声明的类型,但是它们的长度/尺寸与具体实现有关:
uint 32 位或是 64位 int 和 uint 长度一样 uintptr 一个无符号整数类型,它的长度可以容纳下一个指针值
为了避免移植性的问题,所以,除了byte
和uint8
类型一样、rune
和int32
类型一样之外,其他的任意两种类型都是互相区分的。所以,在表达式中或是赋值的时候,只要类型不同就要使用转换;比如说,即使在一个机器上的实现中int32
和int
实际上是有相同的长度也都是有符号的,但是在使用的时候也必须进行转换。
字符串类型代表的是字符串值。字符串用起来像是分片,但是它们是不能修改的;也就是说一个字符串一旦创建,它的内容就是不变的了。预声明的字符串类型名字是string
。
字符串的元素的类型是byte
,我们可以通过索引/下标操作来访问它们。对字符串的某个元素取地址是不允许的,比如s[i]
是第i个元素,但&s[i]
这样是不行的。字符串s
的长度可以使用内置的函数len
获得。一个字符串值的长度在编译时实际就已确定了。
数组就是某种类型的一个序列,只不过序列中的每个元素都有一个编号。序列的元素的个数叫做长度,不能为负。
ArrayType = "[" ArrayLength "]" ElementType . ArrayLength = Expression . ElementType = Type .
长度是数组类型的一部分,而且必须是能求出非负整数值的常量表达式。数组a
的长度可以通过内置函数len(a)
求得。数组的元素下标从 0 开始计算一直到len(a)-1
(§索引)。一个数组通常是一维的,但是也可以组成多维。
[32]byte [2*N] struct { x, y int32 } [1000]*float64 [3][5]int [2][2][2]float64 // 和 [2]([2]([2]float64)) 一个意思
一个分片就是对一个数组上的连续一段的引用,它也是一个有编号的序列,元素取自某个数组。 一个分片类型指代的是对应元素类型的数组的所有可能的分片。一个未初始化的分片的值是nil
.
SliceType = "[" "]" ElementType .
如同数组,分片有个长度,也是通过下标索引访问。分片s
的长度可以通过内置的函数len(s)
取得;和数组不同的是,长度在执行的过程中可以改变。元素可以通过下标索引访问,索引的范围从 0 到len(s)-1
(§索引)。 对于同一个元素来说,在分片中的索引可能会比对应的底层数组的索引要小。
一个分片,一旦初始化以后,它总是关联着一个容纳其元素的底层数组。所以一个分片和它的数组共享存储,当然也和该数组的其他分片共享;相对的是,两个不同的数组总是代表不同的存储。
一个分片对应的底层数组可以能超出分片的范围。容量 可以用来说明这种扩展:超过分片的范围但是又在数组范围以内的部分;可以在原来分片(§分片)的基础上通过“再分片”获取一个扩大到数组容量的分片。一个分片a
的容量可以通过内置的函数cap(a)
取得。
一个新的但未初始化的T
类型的分片,可以使用内置函数make
取值,make 带有一个分片的类型和指定长度和容量的参数,容量参数是可选的:
make([]T, length) make([]T, length, capacity)
对make
的调用会创建一个新的隐含的数组,分片就是引用的这个数组。这也意味着,执行
make([]T, length, capacity)
和下面的执行都分配一个数组并在基础上生成一个分片,生成的两个分片是相同的:
make([]int, 50, 100) new([100]int)[0:50]
如同数组,分片通常是一维的,但是也可以复合构造更高维的对象。对于数组的数组来说,内层的数组的长度在构造的时候总是一样的,然而分片的分片(分片的数组)的长度却是可以变化的。更进步一地说,内层的分片是单独创建的 (使用make
)。
一个结构体就是一系列的带有名字的元素,这些元素又叫做字段,每个字段都一个类型和名字。字段的名字可以是明确指定的(IdentifierList),也可以能是隐含的(AnonymousField)。在一个结构体内部,只要是非空白字段的名字就必须是唯一的。
StructType = "struct" "{" { FieldDecl ";" } "}" . FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] . AnonymousField = [ "*" ] TypeName . Tag = string_lit .
// 空结构体 struct {} // 有 6 个字段的结构体 struct { x, y int u float32 _ float32 // 占位/填充 A *[]int F func() }
一个字段声明的时候只有类型却没有名字,我们叫它为结构体的一个匿名字段,或是嵌入字段或是一个嵌入了型。一个嵌入的类型必须制定一个类型名T
或是一个非接口的指针*T
,而且T
本身不能是指针类型。非限定的名字就像是一个字段名。
// 带有四个匿名字段 T1, *T2, P.T3 和 *P.T4 的结构体 struct { T1 // field name is T1 *T2 // field name is T2 P.T3 // field name is T3 *P.T4 // field name is T4 x, y int // field names are x and y }
下面的声明是不合法的,因为字段名在结构体中并不唯一:
struct { T // 和匿名字段 *T , *P.T 冲突 *T // 和匿名字段 T ,*P.T 冲突 *P.T // 和匿名字段 T , *T 冲突 }
对于结构体x
的一个匿名字段的字段或是方法f
,如果x.f
是一个合法的选择子(可能是一个字段或是一个方法f
),我们就说,它被提升了。
提升后的字段用起来就赶脚是结构体的普通字段,只不过它们在结构体的复合表示中不能用作字段名。
给一个结构体类型S
和一个命名类型T
,提升了的方法按照下面所说的包括在结构体的方法集中:
S
包括一个匿名字段T
,那么S
和*S
的方法集都包括以T
作为接收器而提升的方法.而*S
的方法集又包括以*T
为接收器提升的方法。S
包括一个匿名字段*T
,那么S
和*S
的方法集都包括以T
或是*T
作为接收器而提升的方法.一个字段的声明中可以跟着一个可选的字符串标签,它在相应的字段声明中会算做所有字段的一种属性/性质。这些标签在反射接口中是可以看见的,其他的时候可以认为是忽略不计的。
// 一个用于时间戳协议缓冲区的结构体 // 标签字符串定义了协议缓冲区字段号 struct { microsec uint64 "field 1" serverIP6 uint64 "field 2" process string "field 3" }
一个指针就是可以指向其他类型变量的变量。被指向的变量的类型叫做指针的基类型;如果么有初始化的话,指针值是nil
。
PointerType = "*" BaseType . BaseType = Type .
*Point *[4]int
一个函数类型指代的是带有相同参数和返回值类型的一类函数。一个未初始化的函数变量的值是nil
。
FunctionType = "func" Signature . Signature = Parameters [ Result ] . Result = Parameters | Type . Parameters = "(" [ ParameterList [ "," ] ] ")" . ParameterList = ParameterDecl { "," ParameterDecl } . ParameterDecl = [ IdentifierList ] [ "..." ] Type .
在函数的参数/结果列表中,名字(标识符列表)可以都有也可以都么有。如果有的话,一个名字代表对应类型的一项(参数/结果);如果没有,一个类型代表该类型的一项。参数/结果列表通常用小括号括起来,不过当只有一个返回值且没有名字的情况下,这个括号可以省略掉。
一个函数原型/签名的最后一个参数可能以...
为前缀,这样的函数我们叫可变函数,它们在调用的时候对于那个参数可以传递 0 或是多个实际值。
func() func(x int) int func(a, _ int, z float32) bool func(a, b int, z float32) (bool) func(prefix string, values ...int) func(a, b int, z float64, opt ...interface{}) (success bool) func(int, int, float64) (float64, *[]int) func(n int) func(p *T)
一个接口类型指定了一个称为接口的方法集。一个接口类型的变量可以存某个类型的值,只要这种类型的方法集是接口方法集的超集;这样的一种类型,我们说它实现了接口.一个无初始化的接口的值为nil
。
InterfaceType = "interface" "{" { MethodSpec ";" } "}" . MethodSpec = MethodName Signature | InterfaceTypeName . MethodName = identifier . InterfaceTypeName = TypeName .
在一个接口类型中对于所有的方法集,每一个方法必须有唯一的名字。
// 一个简单的文件接口 interface { Read(b Buffer) bool Write(b Buffer) bool Close() }
可以有多种类型都实现了一个接口。比如,如果S1
和S2
都有方法集:
func (p T) Read(b Buffer) bool { return … } func (p T) Write(b Buffer) bool { return … } func (p T) Close() { … }
(其中T
代表S1
或是S2
)那么,File
接口就是被S1
和S2
都实现了,而我们并不再去关心S1
和S2
是否是有其他方法或是共享了其他神马方法。
一个类型实现了一个接口,只要它的所有方法中的一个子集是接口的方法即可;所以,一种类型可能实现了多个接口。比如说,所有的类型都实现了空接口:
interface{}
类似的,考虑下面的接口说明,这个说明出现在类型声明中,这个类型声明定义了一个叫做Lock
的接口:
type Lock interface { Lock() Unlock() }
如果S1
和S2
都实现了
func (p T) Lock() { … } func (p T) Unlock() { … }
那么,它们就实现了Lock
接口,当然它们也实现了File
接口(看上面)。
一个接口可以使用一个接口类型T
来代替一系列方法说明。这样做等价于,我们在接口中一一枚举T
类型中的方法。
type ReadWrite interface { Read(b Buffer) bool Write(b Buffer) bool } type File interface { ReadWrite // 和一一枚举 ReadWrite 中的方法效果一样 Lock // 和一一枚举 Lock 中的方法效果一样 Close() }
一个接口类型T
不能自身嵌套在自身之中,或是递归地嵌套一个包含它自身T
的接口。
// 非法:不能自身嵌套 type Bad interface { Bad } // 非法:Bad1 不能通过 Bad2 来嵌套自身 type Bad1 interface { Bad2 } type Bad2 interface { Bad1 }
一个 map/映射是一群无序的元素构成的组,这些元素的类型以一种类型的值作为唯一的索引key然后访问到另一种类型的某个值。一个未初始化的映射变量的值为nil
。
MapType = "map" "[" KeyType "]" ElementType . KeyType = Type .
对于 kye/关键字类型的比较运算符==
and !=
(§比较运算符) 必须是完整定义的;于是 key 的类型不能是函数、映射或是分片。如果 key 的类是一个接口的话,这两个比较运算符应该对动态的两个 key 值是完整定义的;失败会引起一个运行时问题。
map[string]int map[*T]struct{ x, y float64 } map[string]interface{}
map 元素的个数叫做它的长度。对于一个 map m
我们可以通过一个内置函数len(m)
访问它的长度,不过它的长度在执行过程中可能会发生变化。元素可以在赋值的时候进行添加,可以通过使用索引/下标表达式来获取;我们也可以使用内置的函数delete
来删除元素。
一个新的空的 map 值可以使用内置的函数make
来构造,这个函数带有 map 的类型和一个可选的容量长度作为参数:
make(map[string]int) make(map[string]int, 100)
一个初始过的 map 的容量不受尺寸的限制:map 根据存的东西的多少会自我调整,当然有个例外就是nil
。nil
map 等价于一个空 map,只不过它还不能添加任何元素。may be added.
管道提供了一种两个并发执行的函数进行同步执行或是通信的机制。管道里面只能传输某一种指定类型的值,初始化的管道的值是nil
。
ChannelType = ( "chan" [ "<-" ] | "<-" "chan" ) ElementType .
<-
运算符指定了管道中输出传输的方向:发送或是接收。如果管道的方向并没有指定的话,那么就认为是双向的。管道经过装换或是赋值后可能就变成只能发送或是只能接收的了。
chan T // 可以发送或是接收 T 类型的数据 chan<- float64 // 只能发送 float64 数据 <-chan int // 只能接收 int 数据
<-
尽可能地左结合chan
:
chan<- chan int // 等同于 chan<- (chan int) chan<- <-chan int // 等同于 chan<- (<-chan int) <-chan <-chan int // 等同于 <-chan (<-chan int) chan (<-chan int)
一个新的未初始化的管道可以使用make
进行构造,构造的时候需要指定管道中数据的类型,而管道的容量则是可选的,也就是可以指定可以不指定:
make(chan int, 100)
容量 —— 也就是管道中元素的个数,指定了管道中的缓冲区的大小。如果容量大于 0,那么管道就是异步的,也就是说只有满的时候阻塞发送、空的时候阻塞接收,而其他的时候不阻塞;当然,元素的接收顺序和发送的顺序一致。如果容量是 0 或是不指定,那么,只有在发送和接收都准备好的时候,通信正常进行,否则都进行阻塞。一个nil
管道不能进行通信。
管道可以通过内置的函数close
进行关闭;而对管道是否关闭的测试可以通过接收操作符的多值赋值来实现。
两种类型要么它们是一样的,要么它们是不同的。
Two named types are identical if their type names originate in the sameTypeSpec.A named and an unnamed type are always different. Two unnamed types are identicalif the corresponding type literals are identical, that is, if they have the sameliteral structure and corresponding components have identical types. In detail:
给一些声明:
type ( T0 []string T1 []string T2 struct{ a, b int } T3 struct{ a, c int } T4 func(int, float64) *T0 T5 func(x int, y float64) *[]string )
下面这些类型是的等价的:
T0 和 T0 []int 和 []int struct{ a, b *T5 } 和 struct{ a, b *T5 } func(x int, y float64) *[]string 和 func(int, float64) (result *[]string)
T0
和T1
是不同的类型,因为它们是不同声明中的命名类型。func(int, float64) *T0
和func(x int, y float64) *[]string
是不同类型,因为T0
的类型不同于[]string
。
只有在下面的情况下,一个值x
才可以赋值给一个T
类型的变量,或是说x
对于T
是可赋值的:
x
的类型和T
的类型一样;x
的类型V
和T
有一样的底层类型,并且V
和T
至少有一个不是有名类型;T
是一个接口类型,而x
实现了接口T
;x
是双向管道,而T
是个管道类型,x
的类型V
和T
有相同的元素类型,并且V
和T
至少有一个不是有名类型;x
是预声明的值nil
,而T
是指针、函数、分片、映射、管道或是接口类型;x
是一个无类型的constant,可以表示T
类型的值。任何一个值都可以赋值给空标识符。
一个块就是放置在一对大括号内的一系列声明和语句。
Block = "{" { Statement ";" } "}" .
除了源文本中明确的块之外,还有一些不显眼的块:
if
、for
和switch
语句都认为它们在一个隐含的块之中。switch
或是select
语句中的每个子句都像是个隐式块。块可以嵌套而且影响作用域。
A declaration binds a non-blankidentifier to a constant, type, variable, function, or package.Every identifier in a program must be declared.No identifier may be declared twice in the same block, andno identifier may be declared in both the file and package block.
Declaration = ConstDecl | TypeDecl | VarDecl . TopLevelDecl = Declaration | FunctionDecl | MethodDecl .
The scope of a declared identifier is the extent of source text in whichthe identifier denotes the specified constant, type, variable, function, or package.
Go is lexically scoped using blocks:
An identifier declared in a block may be redeclared in an inner block.While the identifier of the inner declaration is in scope, it denotesthe entity declared by the inner declaration.
The package clause is not a declaration; the package namedoes not appear in any scope. Its purpose is to identify the files belongingto the samepackage and to specify the default package name for importdeclarations.
Labels are declared by labeled statements and areused in the break
, continue
, andgoto
statements (§Break statements, §Continue statements, §Goto statements).It is illegal to define a label that is never used.In contrast to other identifiers, labels are not block scoped and donot conflict with identifiers that are not labels. The scope of a labelis the body of the function in which it is declared and excludesthe body of any nested function.
空标识符/通配符,使用下划线表示 _
,它可以像其他标识符一样用在声明之中,不过空标识符在声明中并不会将名字和值的绑定。
下面的一些标识符在通用块中预声明了:
类型: bool byte complex64 complex128 error float32 float64 int int8 int16 int32 int64 rune string uint uint8 uint16 uint32 uint64 uintptr 常量: true false iota 0 值: nil 函数: append cap close complex copy delete imag len make new panic print println real recover
一个标志符被导出后就可以在其他包中使用,但是必须满足下面两个条件:
而其他所有的标识符都不是导出的。
给定一些标识符,如果在这些中某一个不同于其他一个,我们就说它是唯一的。如果两个标识符拼写都不一样,那么肯定是不同的,或者是它们处于不同的包之内而又没有被导出,这也是不同的;除此之外的,就认为是相同的标识符。
A constant declaration binds a list of identifiers (the names ofthe 常量) to the values of a list of常量表达式.The number of identifiers must be equalto the number of expressions, and thenth identifier onthe left is bound to the value of the nth expression on theright.
ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . IdentifierList = identifier { "," identifier } . ExpressionList = Expression { "," Expression } .
If the type is present, all 常量 take the type specified, andthe expressions must beassignable to that type.If the type is omitted, the 常量 take theindividual types of the corresponding expressions.If the expression values are untyped常量,the declared 常量 remain untyped and the constant identifiersdenote the constant values. For instance, if the expression is afloating-point literal, the constant identifier denotes a floating-pointconstant, even if the literal's fractional part is zero.
const Pi float64 = 3.14159265358979323846 const zero = 0.0 // untyped floating-point constant const ( size int64 = 1024 eof = -1 // untyped integer constant ) const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string 常量 const u, v float32 = 0, 3 // u = 0.0, v = 3.0
Within a parenthesized const
declaration list theexpression list may be omitted from any but the first declaration.Such an empty list is equivalent to the textual substitution of thefirst preceding non-empty expression list and its type if any.Omitting the list of expressions is therefore equivalent torepeating the previous list. The number of identifiers must be equalto the number of expressions in the previous list.Together with theiota
constant generatorthis mechanism permits light-weight declaration of sequential values:
const ( Sunday = iota Monday Tuesday Wednesday Thursday Friday Partyday numberOfDays // this constant is not exported )
Within a constant declaration, the predeclared identifieriota
represents successive untyped integer常量. It is reset to 0 whenever the reserved word const
appears in the source and increments after eachConstSpec.It can be used to construct a set of related 常量:
const ( // iota is reset to 0 c0 = iota // c0 == 0 c1 = iota // c1 == 1 c2 = iota // c2 == 2 ) const ( a = 1 << iota // a == 1 (iota has been reset) b = 1 << iota // b == 2 c = 1 << iota // c == 4 ) const ( u = iota * 42 // u == 0 (untyped integer constant) v float64 = iota * 42 // v == 42.0 (float64 constant) w = iota * 42 // w == 84 (untyped integer constant) ) const x = iota // x == 0 (iota has been reset) const y = iota // y == 0 (iota has been reset)
Within an ExpressionList, the value of each iota
is the same becauseit is only incremented after each ConstSpec:
const ( bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 bit1, mask1 // bit1 == 2, mask1 == 1 _, _ // skips iota == 2 bit3, mask3 // bit3 == 8, mask3 == 7 )
This last example exploits the implicit repetition of thelast non-empty expression list.
A type declaration binds an identifier, the type name, to a new typethat has the sameunderlying type asan existing type. The new type is different fromthe existing type.
TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . TypeSpec = identifier Type .
type IntArray [16]int type ( Point struct{ x, y float64 } Polar Point ) type TreeNode struct { left, right *TreeNode value *Comparable } type Block interface { BlockSize() int Encrypt(src, dst []byte) Decrypt(src, dst []byte) }
The declared type does not inherit any methodsbound to the existing type, but the method setof an interface type or of elements of a composite type remains unchanged:
// A Mutex is a data type with two methods, Lock and Unlock. type Mutex struct { /* Mutex fields */ } func (m *Mutex) Lock() { /* Lock implementation */ } func (m *Mutex) Unlock() { /* Unlock implementation */ } // NewMutex has the same composition as Mutex but its method set is empty. type NewMutex Mutex // The method set of the base type of PtrMutex remains unchanged, // but the method set of PtrMutex is empty. type PtrMutex *Mutex // The method set of *PrintableMutex contains the methods // Lock and Unlock bound to its anonymous field Mutex. type PrintableMutex struct { Mutex } // MyBlock is an interface type that has the same method set as Block. type MyBlock Block
A type declaration may be used to define a different boolean, 数值, or stringtype and attach methods to it:
type TimeZone int const ( EST TimeZone = -(5 + iota) CST MST PST ) func (tz TimeZone) String() string { return fmt.Sprintf("GMT+%dh", tz) }
一个变量声明创建一个变量,并绑定一个标识符到该变量;声明的时候需要指定类型,而初始值则是可选的。
VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
var i int var U, V, W float64 var k = 0 var x, y float32 = -1, -2 var ( i int u, v, s = 2.0, 3.0, "bar" ) var re, im = complexSqrt(-1) var _, found = entries[name] // map 查找;这里只对 "found" 感兴趣
If a list of expressions is given, the variables are initializedby assigning the expressions to the variables (§Assignments)in order; all expressions must be consumed and all variables initialized from them.Otherwise, each variable is initialized to itszero value.
如果类型指定,那么每个变量都是那种类型。否则的话,类型通过对表达式列表进行推断而得。
如果类型没有指定而且对应的表达式求得的是一个常量,那么这个声明的变量取§赋值这里描述的类型。
实现限制: 一个编译器可以不允许在函数体内声明变量但是却从来不适用的情况。
可以使用短变量声明:
ShortVarDecl = IdentifierList ":=" ExpressionList .
It is a shorthand for a regular variable declarationwith initializer expressions but no types:
"var" IdentifierList = ExpressionList .
i, j := 0, 10 f := func() int { return 7 } ch := make(chan int) r, w := os.Pipe(fd) // os.Pipe() returns two values _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate
Unlike regular variable declarations, a short variable declaration may redeclare variables provided theywere originally declared in the same block with the same type, and atleast one of the non-blank variables is new. As a consequence, redeclarationcan only appear in a multi-variable short declaration.Redeclaration does not introduce a newvariable; it just assigns a new value to the original.
field1, offset := nextField(str, 0) field2, offset := nextField(str, offset) // redeclares offset
Short variable declarations may appear only inside functions.In some contexts such as the initializers forif
,for
, or switch
statements,they can be used to declare local temporary variables (§Statements).
一个函数声明实际就是将一个标识符,或是说函数名和一个具体的函数绑定到一起。
FunctionDecl = "func" FunctionName Signature [ Body ] . FunctionName = identifier . Body = Block .
一个函数声明可以没有函数体,这样的函数声明实际上只是提供了一个函数调用时的原型/签名,而真正的函数甚至可以是 Go 语言之外的实现,比如一个汇编例程。
func min(x int, y int) int { if x < y { return x } return y } func flushICache(begin, end uintptr) // 外部实现
A method is a function with a receiver.A method declaration binds an identifier, themethod name, to a method.It also associates the method with the receiver'sbase type.
MethodDecl = "func" Receiver MethodName Signature [ Body ] . Receiver = "(" [ identifier ] [ "*" ] BaseTypeName ")" . BaseTypeName = identifier .
The receiver type must be of the form T
or *T
whereT
is a type name. The type denoted byT
is calledthe receiver base type; it must not be a pointer or interface type andit must be declared in the same package as the method.The method is said to bebound to the base type and the method nameis visible only within selectors for that type.
For a base type, the non-blank names ofmethods bound to it must beunique.If the base type is a struct type,the non-blank method and field names must be distinct.
Given type Point
, the declarations
func (p *Point) Length() float64 { return math.Sqrt(p.x * p.x + p.y * p.y) } func (p *Point) Scale(factor float64) { p.x *= factor p.y *= factor }
bind the methods Length
and Scale
,with receiver type*Point
,to the base type Point
.
If the receiver's value is not referenced inside the body of the method,its identifier may be omitted in the declaration. The same applies ingeneral to parameters of functions and methods.
The type of a method is the type of a function with the receiver as firstargument. For instance, the methodScale
has type
func(p *Point, factor float64)
这样的函数声明时不能算作一个方法。
表达式实际指定的是将一系列操作数使用运算符或是函数进行计算求值。
Operands denote the elementary values in an expression. An operand may be aliteral, a (possiblyqualified) identifierdenoting a常量,变量, or函数,a方法表达式 yielding a function,or a parenthesized expression.
Operand = Literal | OperandName | MethodExpr | "(" Expression ")" . Literal = BasicLit | CompositeLit | FunctionLit . BasicLit = int_lit | float_lit | imaginary_lit | char_lit | string_lit . OperandName = identifier | QualifiedIdent.
A qualified identifier is an identifier qualified with a package name prefix.Both the package name and the identifier must not beblank.
QualifiedIdent = PackageName "." identifier .
A qualified identifier accesses an identifier in a different package, whichmust beimported.The identifier must be exported anddeclared in the package block of that package.
math.Sin // denotes the Sin function in package math
Composite literals construct values for structs, arrays, slices, and mapsand create a new value each time they are evaluated.They consist of the type of the valuefollowed by a brace-bound list of composite elements. An element may bea single expression or a key-value pair.
CompositeLit = LiteralType LiteralValue . LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | SliceType | MapType | TypeName . LiteralValue = "{" [ ElementList [ "," ] ] "}" . ElementList = Element { "," Element } . Element = [ Key ":" ] Value . Key = FieldName | ElementIndex . FieldName = identifier . ElementIndex = Expression . Value = Expression | LiteralValue .
The LiteralType must be a struct, array, slice, or map type(the grammar enforces this constraint except when the type is givenas a TypeName).The types of the expressions must beassignableto the respective field, element, and key types of the LiteralType;there is no additional conversion.The key is interpreted as a field name for struct literals,an index expression for array and slice literals, and a key for map literals.For map literals, all elements must have a key. It is an errorto specify multiple elements with the same field name orconstant key value.
For struct literals the following rules apply:
Given the declarations
type Point3D struct { x, y, z float64 } type Line struct { p, q Point3D }
one may write
origin := Point3D{} // zero value for Point3D line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x
For array and slice literals the following rules apply:
Taking the address of a composite literal (§Address operators)generates a pointer to a unique instance of the literal's value.
var pointer *Point3D = &Point3D{y: 1000}
The length of an array literal is the length specified in the LiteralType.If fewer elements than the length are provided in the literal, the missingelements are set to the zero value for the array element type.It is an error to provide elements with index values outside the index rangeof the array. The notation ...
specifies an array length equalto the maximum element index plus one.
buffer := [10]string{} // len(buffer) == 10 intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 days := [...]string{"Sat", "Sun"} // len(days) == 2
A slice literal describes the entire underlying array literal.Thus, the length and capacity of a slice literal are the maximumelement index plus one. A slice literal has the form
[]T{x1, x2, … xn}
and is a shortcut for a slice operation applied to an array:
tmp := [n]T{x1, x2, … xn} tmp[0 : n]
Within a composite literal of array, slice, or map type T
,elements that are themselves composite literals may elide the respectiveliteral type if it is identical to the element type ofT
.Similarly, elements that are addresses of composite literals may elidethe&T
when the element type is *T
.
[...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} [][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} [...]*Point{{1.5, -3.5}, {0, 0}} // same as [...]*Point{&Point{1.5, -3.5}, &Point{0, 0}}
A parsing ambiguity arises when a composite literal using theTypeName form of the LiteralType appears between thekeyword and the opening brace of the block of an"if", "for", or "switch" statement, because the braces surroundingthe expressions in the literal are confused with those introducingthe block of statements. To resolve the ambiguity in this rare case,the composite literal must appear withinparentheses.
if x == (T{a,b,c}[i]) { … } if (x == T{a,b,c}[i]) { … }
Examples of valid array, slice, and map literals:
// list of prime numbers primes := []int{2, 3, 5, 7, 9, 2147483647} // vowels[ch] is true if ch is a vowel vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} // frequencies in Hz for equal-tempered scale (A4 = 440Hz) noteFrequency := map[string]float32{ "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, "G0": 24.50, "A0": 27.50, "B0": 30.87, }
一个函数字面值代表一个匿名函数。它包括一个函数类型的说明以及一个函数体。
FunctionLit = FunctionType Body .
func(a, b int, z float64) bool { return a*b < int(z) }
一个函数字面值可以赋值给一个变量,也可以指直接调用。
f := func(x, y int) int { return x + y } func(ch chan int) { ch <- ACK }(replyChan)
函数字面量可以是闭包closures: 它访问它周围函数中的变量。这些变量既可以在周围的函数中使用,也可以在这个函数字面量中使用,只要它们在使用着,它们就存在着,也就是说,它们的生存期可以延长。
主要的表达式指的是那些一元、二元运算符表达式:
PrimaryExpr = Operand | Conversion | BuiltinCall | PrimaryExpr Selector | PrimaryExpr Index | PrimaryExpr Slice | PrimaryExpr TypeAssertion | PrimaryExpr Call . Selector = "." identifier . Index = "[" Expression "]" . Slice = "[" [ Expression ] ":" [ Expression ] "]" . TypeAssertion = "." "(" Type ")" . Call = "(" [ ArgumentList [ "," ] ] ")" . ArgumentList = ExpressionList [ "..." ] .
x 2 (s + ".txt") f(3.1415, true) Point{1, 2} m["foo"] s[i : j + 1] obj.color f.p[i].x()
对于主表达式x
(不是包名)来说,选择子表达式
x.f
代表的是x
(有时候可能会是*x
;见下面)的字段或是方法f
。标识符f
,不管是字段或是方法,我们都叫它选择子;它必须不能是空标识符。选择子表达式的类型就是f
的类型。如果x
是个包名的话,你还是看限定标识符这里吧。
选择子f
可能指代的就是类型T
的字段或是方法f
,它也可能指代的是T
的一个匿名字段的字段或是方法f
。访问到f
所要经过的匿名字段的数量叫做在T
中的深度。如果字段f
在T
中声明,那么它的深度就是0。在T
中的字段或是方法f
的深度是f
在匿名字段A
(在T
声明)中的深度再加 1。
对选择子有下面一些规则:
T
类型或是一个指针*T
(T
不是接口类型)的值x
,x.f
代表的是在T
中的最浅层次的字段或是方法,它们之中有一个f
。如果在最浅层次上没有精确的一个f
,那么选择子表达式就是不合法的。I
类型(I
是一个接口)的值x
那么 x.f
指代的是赋值给x
的实际的f
名字的方法。如果在I
的方法集中没有一个名字为method set的方法,那么这个选择子表达式就是不合法的。x.f
都是不合法的。x
是个指针或是接口类型,但是值却是nil
,不管是赋值、计算值或是调用x.f
都引起一个运行时问题。选择子会自动解析指向结构体的指针。如果x
是个一个结构体指针,那么x.y
就代表(*x).y
;如果y
还是一个结构体指针,那么x.y.z
代表(*(*x).y).z
,以此类推。如果x
包括一个匿名字段类型*A
,而A
又是一个结构体类型,那么x.f
代表的是(*x.A).f
。
举个例子,给个声明:
type T0 struct { x int } func (recv *T0) M0() type T1 struct { y int } func (recv T1) M1() type T2 struct { z int T1 *T0 } func (recv *T2) M2() var p *T2 // with p != nil and p.T0 != nil
下面的都是合法的:
p.z // (*p).z p.y // ((*p).T1).y p.x // (*(*p).T0).x p.M2 // (*p).M2 p.M1 // ((*p).T1).M1 p.M0 // ((*p).T0).M0
一个有下面形式的主表达式:
a[x]
用来访问数组、分片、字符串或是映射 map a
中的以x
为下标/索引的元素。值x
被叫做下标/索引index或是map 键。对于它们有下面的规则:
For a
of type A
or *A
where A
is anarray type,or for a
of type S
where S
is aslice type:
x
must be an integer value and 0 <= x < len(a)
a[x]
is the array element at index x
and the type ofa[x]
is the element type of A
a
is nil
or if the index x
is out of range,arun-time panic occursFor a
of type T
where T
is a string type:
x
must be an integer value and 0 <= x < len(a)
a[x]
is the byte at index x
and the type of a[x]
isbyte
a[x]
may not be assigned tox
is out of range,a run-time panic occursFor a
of type M
where M
is a map type:
x
's type must beassignableto the key type ofM
x
, a[x]
is the map value with keyx
and the type of a[x]
is the value type of M
nil
or does not contain such an entry, a[x]
is thezero value for the value type of M
Otherwise a[x]
is illegal.
An index expression on a map a
of type map[K]V
may be used in an assignment or initialization of the special form
v, ok = a[x] v, ok := a[x] var v, ok = a[x]
where the result of the index expression is a pair of values with types(V, bool)
. In this form, the value ofok
istrue
if the key x
is present in the map, andfalse
otherwise. The value ofv
is the valuea[x]
as in the single-result form.
Assigning to an element of a nil
map causes arun-time panic.
对于一个string、数组、数组指针或是一个分片a
,主表达式
a[low : high]
实际上构造了一个子string或是分片。下标表达式low
和high
决定了哪些元素出现在结果中。结果是索引或是下标从low
开始长度为high
- low
。在堆数组a
进行分片之后
a := [5]int{1, 2, 3, 4, 5} s := a[1:4]
分片s
类型[]int
,长度为3,容量为4, and elements
s[0] == 2 s[1] == 3 s[2] == 4
For convenience, any of the index expressions may be omitted. A missing low
index defaults to zero; a missing high
index defaults to the length of thesliced operand:
a[2:] // same a[2 : len(a)] a[:3] // same as a[0 : 3] a[:] // same as a[0 : len(a)]
For arrays or strings, the indexes low
and high
mustsatisfy 0 <=low
<= high
<= length; forslices, the upper bound is the capacity rather than the length.
If the sliced operand is a string or slice, the result of the slice operationis a string or slice of the same type.If the sliced operand is an array, it must beaddressableand the result of the slice operation is a slice with the same element type as the array.
For an expression x
of interface typeand a type T
, the primary expression
x.(T)
asserts that x
is not nil
and that the value stored inx
is of type T
.The notation x.(T)
is called atype assertion.
More precisely, if T
is not an interface type, x.(T)
assertsthat the dynamic type ofx
is identicalto the type T
.If T
is an interface type, x.(T)
asserts that the dynamic typeof x
implements the interfaceT
(§Interface types).
If the type assertion holds, the value of the expression is the valuestored inx
and its type is T
. If the type assertion is false,a run-time panic occurs.In other words, even though the dynamic type of x
is known only at run-time, the type ofx.(T)
isknown to be T
in a correct program.
If a type assertion is used in an assignment or initialization of the form
v, ok = x.(T) v, ok := x.(T) var v, ok = x.(T)
the result of the assertion is a pair of values with types (T, bool)
.If the assertion holds, the expression returns the pair(x.(T), true)
;otherwise, the expression returns (Z, false)
whereZ
is the zero value for type T
.No run-time panic occurs in this case.The type assertion in this construct thus acts like a function callreturning a value and a boolean indicating success. (§Assignments)
一个函数类型F
的一个表达式f
,
f(a1, a2, … an)
调用f
,带有参数a1, a2, … an
。除了一个特殊的情况,参数都是单值表达式,可以赋值给F
的参数,而且是在函数调用之前求值。表达式的类型就是F
的返回值类型。一个方法的调用也是类似的,只不过方法要指定一个选择子作为该方法的接收器。
math.Atan2(x, y) // function call var pt *Point pt.Scale(3.5) // method call with receiver pt
In a function call, the function value and arguments are evaluated inthe usual order.After they are evaluated, the parameters of the call are passed by value to the functionand the called function begins execution.The return parameters of the function are passed by valueback to the calling function when the function returns.
Calling a nil
function valuecauses a run-time panic.
As a special case, if the return parameters of a function or methodg
are equal in number and individuallyassignable to the parameters of another function or methodf
, then the callf(g(parameters_of_g))
will invoke f
after binding the return values ofg
to the parameters off
in order. The callof f
must contain no parameters other than the call ofg
.If f
has a final ...
parameter, it isassigned the return values ofg
that remain afterassignment of regular parameters.
func Split(s string, pos int) (string, string) { return s[0:pos], s[pos:] } func Join(s, t string) string { return s + t } if Join(Split(value, len(value)/2)) != value { log.Panic("test fails") }
A method call x.m()
is valid if the method setof (the type of) x
contains m
and theargument list can be assigned to the parameter list ofm
.If x
is addressable and &x
's methodset contains m
, x.m()
is shorthandfor(&x).m()
:
var p Point p.Scale(3.5)
There is no distinct method type and there are no method literals.
...
parametersIf f
is variadic with final parameter type ...T
,then within the function the argument is equivalent to a parameter of type[]T
. At each call off
, the argumentpassed to the final parameter isa new slice of type []T
whose successive elements arethe actual arguments, which all must be assignableto the type T
. The length of the slice is therefore the number ofarguments bound to the final parameter and may differ for each call site.
Given the function and call
func Greeting(prefix string, who ...string) Greeting("hello:", "Joe", "Anna", "Eileen")
within Greeting
, who
will have the value[]string{"Joe", "Anna", "Eileen"}
If the final argument is assignable to a slice type []T
, it may bepassed unchanged as the value for a...T
parameter if the argumentis followed by ...
. In this case no new slice is created.
Given the slice s
and call
s := []string{"James", "Jasmine"} Greeting("goodbye:", s...)
within Greeting
, who
will have the same value as s
with the same underlying array.
Operators combine operands into expressions.
Expression = UnaryExpr | Expression binary_op UnaryExpr . UnaryExpr = PrimaryExpr | unary_op UnaryExpr . binary_op = "||" | "&&" | rel_op | add_op | mul_op . rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . add_op = "+" | "-" | "|" | "^" . mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" .
Comparisons are discussed elsewhere.For other binary operators, the operand types must be identicalunless the operation involves shifts or untyped 常量.For operations involving 常量 only, see the section onconstant expressions.
Except for shift operations, if one operand is an untyped constantand the other operand is not, the constant is convertedto the type of the other operand.
The right operand in a shift expression must have unsigned integer typeor be an untyped constant that can be converted to unsigned integer type.If the left operand of a non-constant shift expression is an untyped constant,the type of the constant is what it would be if the shift expression werereplaced by its left operand alone; the type isint
if it cannotbe determined from the context (for instance, if the shift expression is anoperand in a comparison against an untyped constant).
var s uint = 33 var i = 1<<s // 1 has type int var j int32 = 1<<s // 1 has type int32; j == 0 var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 var m int = 1.0<<s // 1.0 has type int var n = 1.0<<s != 0 // 1.0 has type int; n == false if ints are 32bits in size var o = 1<<s == 2<<s // 1 and 2 have type int; o == true if ints are 32bits in size var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift var v float32 = 1<<s // illegal: 1 has type float32, cannot shift var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression
Unary operators have the highest precedence.As the ++
and --
operators formstatements, not expressions, they falloutside the operator hierarchy.As a consequence, statement*p++
is the same as (*p)++
.
There are five precedence levels for binary operators.Multiplication operators bind strongest, followed by additionoperators, comparison operators,&&
(logical and),and finally ||
(logical or):
Precedence Operator 5 * / % << >> & &^ 4 + - | ^ 3 == != < <= > >= 2 && 1 ||
Binary operators of the same precedence associate from left to right.For instance,x / y * z
is the same as (x / y) * z
.
+x 23 + 3*x[i] x <= f() ^a >> b f() || g() x == y+1 && <-chanPtr > 0
Arithmetic operators apply to 数值 values and yield a result of the sametype as the first operand. The four standard arithmetic operators (+
,-
,*
, /
) apply to integer,floating-point, and complex types;+
also appliesto strings. All other arithmetic operators apply to integers only.
+ sum integers, floats, complex values, strings - difference integers, floats, complex values * product integers, floats, complex values / quotient integers, floats, complex values % remainder integers & bitwise and integers | bitwise or integers ^ bitwise xor integers &^ bit clear (and not) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer
Strings can be concatenated using the +
operatoror the +=
assignment operator:
s := "hi" + string(c) s += " and good bye"
String addition creates a new string by concatenating the operands.
For two integer values x
and y
, the integer quotientq = x / y
and remainderr = x % y
satisfy the followingrelationships:
x = q*y + r and |r| < |y|
with x / y
truncated towards zero("truncated division").
x y x / y x % y 5 3 1 2 -5 3 -1 -2 5 -3 -1 2 -5 -3 1 -2
As an exception to this rule, if the dividend x
is the mostnegative value for the int type ofx
, the quotientq = x / -1
is equal to x
(andr = 0
).
x, q int8 -128 int16 -32768 int32 -2147483648 int64 -9223372036854775808
If the divisor is zero, a run-time panic occurs.If the dividend is positive and the divisor is a constant power of 2,the division may be replaced by a right shift, and computing the remainder maybe replaced by a bitwise "and" operation:
x x / 4 x % 4 x >> 2 x & 3 11 2 3 2 3 -11 -2 -3 -3 1
The shift operators shift the left operand by the shift count specified by theright operand. They implement arithmetic shifts if the left operand is a signedinteger and logical shifts if it is an unsigned integer.There is no upper limit on the shift count. Shifts behaveas if the left operand is shifted n
times by 1 for a shiftcount ofn
.As a result, x << 1
is the same as x*2
andx >> 1
is the same asx/2
but truncated towards negative infinity.
For integer operands, the unary operators+
, -
, and ^
are defined asfollows:
+x is 0 + x -x negation is 0 - x ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x and m = -1 for signed x
For floating-point and complex numbers,+x
is the same as x
,while-x
is the negation of x
.The result of a floating-point or complex division by zero is not specified beyond theIEEE-754 standard; whether arun-time panicoccurs is implementation-specific.
For unsigned integer values, the operations +
,-
, *
, and <<
arecomputed modulo 2n, where n is the bit width ofthe unsigned integer's type(§Numeric types). Loosely speaking, these unsigned integer operationsdiscard high bits upon overflow, and programs may rely on ``wrap around''.
For signed integers, the operations +
,-
, *
, and<<
may legallyoverflow and the resulting value exists and is deterministically definedby the signed integer representation, the operation, and its operands.No exception is raised as a result of overflow. Acompiler may not optimize code under the assumption that overflow doesnot occur. For instance, it may not assume that x < x + 1
is always true.
Comparison operators compare two operands and yield a boolean value.
== equal != not equal < less <= less or equal > greater >= greater or equal
In any comparison, the first operandmust be assignableto the type of the second operand, or vice versa.
The equality operators ==
and !=
applyto operands that arecomparable.The ordering operators <
, <=
, >
, and >=
apply to operands that are ordered.These terms and the result of the comparisons are defined as follows:
true
or bothfalse
.u
and v
areequal if bothreal(u) == real(v)
andimag(u) == imag(v)
.nil
.Pointers to distinct zero-size variables may or may not be equal.make
(§Making slices, maps, and channels)or if both have valuenil
.nil
.x
of non-interface type X
anda value t
of interface type T
are comparable when valuesof type X
are comparable andX
implements T
.They are equal ift
's dynamic type is identical to X
and t
's dynamic value is equal tox
.A comparison of two interface values with identical dynamic typescauses a run-time panic if valuesof that type are not comparable. This behavior applies not only to direct interfacevalue comparisons but also when comparing arrays of interface valuesor structs with interface-valued fields.
Slice, map, and function values are not comparable.However, as a special case, a slice, map, or function value maybe compared to the predeclared identifiernil
.Comparison of pointer, channel, and interface values to nil
is also allowed and follows from the general rules above.
The result of a comparison can be assigned to any boolean type.If the context does not demand a specific boolean type,the result has typebool
.
type MyBool bool var x, y int var ( b1 MyBool = x == y // result of comparison has type MyBool b2 bool = x == y // result of comparison has type bool b3 = x == y // result of comparison has type bool )
Logical operators apply to boolean valuesand yield a result of the same type as the operands.The right operand is evaluated conditionally.
&& conditional and p && q is "if p then q else false" || conditional or p || q is "if p then true else q" ! not !p is "not p"
For an operand x
of type T
, the address operation&x
generates a pointer of type*T
to x
.The operand must be addressable,that is, either a variable, pointer indirection, or slice indexingoperation; or a field selector of an addressable struct operand;or an array indexing operation of an addressable array.As an exception to the addressability requirement, x
may also be acomposite literal.
For an operand x
of pointer type *T
, the pointerindirection*x
denotes the value of type T
pointedto by x
.Ifx
is nil
, an attempt to evaluate *x
will cause arun-time panic.
&x &a[f(2)] *p *pf(x)
For an operand ch
of channel type,the value of the receive operation <-ch
is the value receivedfrom the channelch
. The type of the value is the element type ofthe channel. The expression blocks until a value is available.Receiving from anil
channel blocks forever.Receiving from a closed channel always succeeds,immediately returning the element type's zerovalue.
v1 := <-ch v2 = <-ch f(<-ch) <-strobe // wait until clock pulse and discard received value
A receive expression used in an assignment or initialization of the form
x, ok = <-ch x, ok := <-ch var x, ok = <-ch
yields an additional result of type bool
reporting whether thecommunication succeeded. The value ofok
is true
if the value received was delivered by a successful send operation to thechannel, orfalse
if it is a zero value generated because thechannel is closed and empty.
If M
is in the method set of type T
,T.M
is a function that is callable as a regular functionwith the same arguments asM
prefixed by an additionalargument that is the receiver of the method.
MethodExpr = ReceiverType "." MethodName . ReceiverType = TypeName | "(" "*" TypeName ")" .
Consider a struct type T
with two methods,Mv
, whose receiver is of typeT
, andMp
, whose receiver is of type *T
.
type T struct { a int } func (tv T) Mv(a int) int { return 0 } // value receiver func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver var t T
The expression
T.Mv
yields a function equivalent to Mv
butwith an explicit receiver as its first argument; it has signature
func(tv T, a int) int
That function may be called normally with an explicit receiver, sothese three invocations are equivalent:
t.Mv(7) T.Mv(t, 7) f := T.Mv; f(t, 7)
Similarly, the expression
(*T).Mp
yields a function value representing Mp
with signature
func(tp *T, f float32) float32
For a method with a value receiver, one can derive a functionwith an explicit pointer receiver, so
(*T).Mv
yields a function value representing Mv
with signature
func(tv *T, a int) int
Such a function indirects through the receiver to create a valueto pass as the receiver to the underlying method;the method does not overwrite the value whose address is passed inthe function call.
The final case, a value-receiver function for a pointer-receiver method,is illegal because pointer-receiver methods are not in the method setof the value type.
Function values derived from methods are called with function call syntax;the receiver is provided as the first argument to the call.That is, givenf := T.Mv
, f
is invokedas f(t, 7)
not t.f(7)
.To construct a function that binds the receiver, use aclosure.
It is legal to derive a function value from a method of an interface type.The resulting function takes an explicit receiver of that interface type.
Conversions are expressions of the form T(x)
where T
is a type andx
is an expressionthat can be converted to type T
.
Conversion = Type "(" Expression ")" .
If the type starts with an operator it must be parenthesized:
*Point(p) // same as *(Point(p)) (*Point)(p) // p is converted to (*Point) <-chan int(c) // same as <-(chan int(c)) (<-chan int)(c) // c is converted to (<-chan int)
A constant value x
can be converted totype T
in any of these cases:
x
is representable by a value of type T
.x
is an integer constant and T
is astring type.The same rule as for non-constantx
applies in this case(§Conversions to and from a string type).Converting a constant yields a typed constant as result.
uint(iota) // iota value of type uint float32(2.718281828) // 2.718281828 of type float32 complex128(1) // 1.0 + 0.0i of type complex128 string('x') // "x" of type string string(0x266c) // "♬" of type string MyString("foo" + "bar") // "foobar" of type MyString string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant (*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, 数值, or string type int(1.2) // illegal: 1.2 cannot be represented as an int string(65.0) // illegal: 65.0 is not an integer constant
A non-constant value x
can be converted to type T
in any of these cases:
x
is assignableto T
.x
's type and T
have identicalunderlying types.x
's type and T
are unnamed pointer typesand their pointer base types have identical underlying types.x
's type and T
are both integer or floatingpoint types.x
's type and T
are both complex types.x
is an integer or has type []byte
or[]rune
andT
is a string type.x
is a string and T
is []byte
or[]rune
.Specific rules apply to (non-constant) conversions between 数值 types orto and from a string type.These conversions may change the representation ofx
and incur a run-time cost.All other conversions only change the type but not the representationofx
.
There is no linguistic mechanism to convert between pointers and integers.The packageunsafe
implements this functionality underrestricted circumstances.
For the conversion of non-constant 数值 values, the following rules apply:
v := uint16(0x10F0)
, then uint32(int8(v)) == 0xFFFFFFF0
.The conversion always yields a valid value; there is no indication of overflow.x
of type float32
may be stored using additional precision beyond that of an IEEE-754 32-bit number,but float32(x) represents the result of roundingx
's value to32-bit precision. Similarly, x + 0.1
may use more than 32 bitsof precision, butfloat32(x + 0.1)
does not.In all non-constant conversions involving floating-point or complex values,if the result type cannot represent the value the conversionsucceeds but the result value is implementation-dependent.
"\uFFFD"
. string('a') // "a" string(-1) // "\ufffd" == "\xef\xbf\xbd" string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" type MyString string MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5"
nil
, the result is the empty string. string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" type MyBytes []byte string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø"
nil
, theresult is the empty string. string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" type MyRunes []rune string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔"
[]byte(nil)
. []byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
[]rune(nil)
. []rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4} MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4}
Constant expressions may contain only constantoperands and are evaluated at compile-time.
Untyped boolean, 数值, and string 常量 may be used as operandswherever it is legal to use an operand of boolean, 数值, or string type,respectively.Except for shift operations, if the operands of a binary operation aredifferent kinds of untyped 常量, the operation and, for non-boolean operations, the result usethe kind that appears later in this list: integer, rune, floating-point, complex.For example, an untyped integer constant divided by anuntyped complex constant yields an untyped complex constant.
A constant comparison always yieldsan untyped boolean constant. If the left operand of a constantshift expression is an untyped constant, theresult is an integer constant; otherwise it is a constant of the sametype as the left operand, which must be of integer type(§Arithmetic operators).Applying all other operators to untyped 常量 results in an untypedconstant of the same kind (that is, a boolean, integer, floating-point,complex, or string constant).
const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) const b = 15 / 4 // b == 3 (untyped integer constant) const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) const Θ float64 = 3/2 // Θ == 1.5 (type float64) const d = 1 << 3.0 // d == 8 (untyped integer constant) const e = 1.0 << 3 // e == 8 (untyped integer constant) const f = int32(1) << 33 // f == 0 (type int32) const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) const h = "foo" > "bar" // h == true (untyped boolean constant) const j = true // j == true (untyped boolean constant) const k = 'w' + 1 // k == 'x' (untyped rune constant) const l = "hi" // l == "hi" (untyped string constant) const m = string(k) // m == "x" (type string) const Σ = 1 - 0.707i // (untyped complex constant) const Δ = Σ + 2.0e-4 // (untyped complex constant) const Φ = iota*1i - 1/1i // (untyped complex constant)
Applying the built-in function complex
to untypedinteger, rune, or 浮点常量 yieldsan untyped complex constant.
const ic = complex(0, c) // ic == 3.75i (untyped complex constant) const iΘ = complex(0, Θ) // iΘ == 1.5i (type complex128)
Constant expressions are always evaluated exactly; intermediate values and the常量 themselves may require precision significantly larger than supportedby any predeclared type in the language. The following are legal declarations:
const Huge = 1 << 100 const Four int8 = Huge >> 98
The values of typed 常量 must always be accurately representable as valuesof the constant type. The following constant expressions are illegal:
uint(-1) // -1 cannot be represented as a uint int(3.14) // 3.14 cannot be represented as an int int64(Huge) // 1<<100 cannot be represented as an int64 Four * 300 // 300 cannot be represented as an int8 Four * 100 // 400 cannot be represented as an int8
The mask used by the unary bitwise complement operator ^
matchesthe rule for non-常量: the mask is all 1s for unsigned 常量and -1 for signed and untyped 常量.
^1 // untyped integer constant, equal to -2 uint8(^1) // error, same as uint8(-2), out of range ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) int8(^1) // same as int8(-2) ^int8(1) // same as -1 ^ int8(1) = -2
Implementation restriction: A compiler may use rounding whilecomputing untyped floating-point or complex constant expressions; seethe implementation restriction in the sectionon常量. This rounding may cause afloating-point constant expression to be invalid in an integercontext, even if it would be integral when calculated using infiniteprecision.
When evaluating the operands of an expression,assignment, orreturn statement,all function calls, method calls, andcommunication operations are evaluated in lexical left-to-rightorder.
For example, in the assignment
y[f()], ok = g(h(), i()+x[j()], <-c), k()
the function calls and communication happen in the orderf()
, h()
, i()
, j()
,<-c
, g()
, andk()
.However, the order of those events compared to the evaluationand indexing ofx
and the evaluationof y
is not specified.
a := 1 f := func() int { a = 2; return 3 } x := []int{a, f()} // x may be [1, 3] or [2, 3]: evaluation order between a and f() is not specified
Floating-point operations within a single expression are evaluated according tothe associativity of the operators. Explicit parentheses affect the evaluationby overriding the default associativity.In the expressionx + (y + z)
the addition y + z
is performed before addingx
.
语句控制了程序的执行。
Statement = Declaration | LabeledStmt | SimpleStmt | GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | DeferStmt . SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
空语句神马也不做。
EmptyStmt = .
一个标号语句可能会被goto
、break
或是continue
使用到。
LabeledStmt = Label ":" Statement . Label = identifier .
Error: log.Panic("error encountered")
函数调用、方法调用和接收操作可以出现在语句中;有的时候可能会用到括号。
ExpressionStmt = Expression .
h(x+y) f.Close() <-ch (<-ch)
一个发送语句向管道中送入一个值。管道表达式当然必须是管道类型,而值必须对于管道中的元素类型来说是可赋值的。
SendStmt = Channel "<-" Expression . Channel = Expression .
管道和求值都是发生在通信之前。在发送可以开始之前,通信是处于阻塞状态;向一个无缓冲管道发送数据,只有接收准备就绪时发送才正常进行;而向一个有缓冲管道发送数据,只要缓冲区有空间发送便可以进行。如果向一个已经关闭了的管道发送数据,会导致一个运行时问题。向nil
中发送一个数据会导致永远阻塞。
ch <- 3
"++"和"--"语句对操作数增加或是减少一个无类型的常量1
。为了赋值,要求操作数必须是可寻址的或是一个 map的下标表达式。
IncDecStmt = Expression ( "++" | "--" ) .
下面的赋值语句在语义上是等价的:
IncDec statement Assignment x++ x += 1 x-- x -= 1
Assignment = ExpressionList assign_op ExpressionList . assign_op = [ add_op | mul_op ] "=" .
每一个左边的操作数必须是可寻址的或是一个 map 的索引索引表达式,或是空标识符。操作数也许会带有括号。
x = 1 *p = f() a[i] = 23 (k) = <-ch // same as: k = <-ch
An assignment operation x
op=
y
whereop is a binary arithmetic operation is equivalentto x
=
x
opy
but evaluates x
only once. Theop=
construct is a single token.In assignment operations, both the left- and right-hand expression listsmust contain exactly one single-valued expression.
a[i] <<= 2 i &^= 1<<n
A tuple assignment assigns the individual elements of a multi-valuedoperation to a list of variables. There are two forms. In thefirst, the right hand operand is a single multi-valued expressionsuch as a function evaluation orchannel ormap operation or atype assertion.The number of operands on the lefthand side must match the number of values. For instance, iff
is a function returning two values,
x, y = f()
assigns the first value to x
and the second to y
.Theblank identifier provides away to ignore values returned by a multi-valued expression:
x, _ = f() // ignore second value returned by f()
In the second form, the number of operands on the left must equal the numberof expressions on the right, each of which must be single-valued, and thenth expression on the right is assigned to thenthoperand on the left.
The assignment proceeds in two phases.First, the operands of index expressionsand pointer indirections(including implicit pointer indirections in selectors)on the left and the expressions on the right are allevaluated in the usual order.Second, the assignments are carried out in left-to-right order.
a, b = b, a // exchange a and b x := []int{1, 2, 3} i := 0 i, x[i] = 1, 2 // set i = 1, x[0] = 2 i = 0 x[i], i = 2, 1 // set x[0] = 2, i = 1 x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. type Point struct { x, y int } var p *Point x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 i = 2 x = []int{3, 5, 7} for i, x[i] = range x { // set i, x[2] = 0, x[0] break } // after this loop, i == 0 and x == []int{3, 5, 3}
In assignments, each value must beassignable to the type of theoperand to which it is assigned. If an untypedconstantis assigned to a variable of interface type, the constant is convertedto type bool
, rune
, int
, float64
,complex128
or string
respectively, depending on whether the value is aboolean, rune, integer, floating-point, complex, or string constant.
if 语句会根据一个布尔表达式的结果进行条件执行;如果布尔表达式求得 true,那么 if 分支执行,否则的话,有 else 的话就执行 else 分支,么有的话就罢了。
IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
if x > max { x = max }
表达式可能会带有一个前置语句,前置语句会在表达式之前进行计算。
if x := f(); x < y { return x } else if x > z { return z } else { return y }
"Switch" statements provide multi-way execution.An expression or type specifier is compared to the "cases"inside the "switch" to determine which branchto execute.
SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
There are two forms: expression switches and type switches.In an expression switch, the cases contain expressions that are comparedagainst the value of the switch expression.In a type switch, the cases contain types that are compared against thetype of a specially annotated switch expression.
In an expression switch,the switch expression is evaluated andthe case expressions, which need not be 常量,are evaluated left-to-right and top-to-bottom; the first one that equals theswitch expressiontriggers execution of the statements of the associated case;the other cases are skipped.If no case matches and there is a "default" case,its statements are executed.There can be at most one default case and it may appear anywhere in the"switch" statement.A missing switch expression is equivalent tothe expressiontrue
.
ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . ExprCaseClause = ExprSwitchCase ":" { Statement ";" } . ExprSwitchCase = "case" ExpressionList | "default" .
In a case or default clause,the last statement only may be a "fallthrough" statement(§Fallthrough statement) toindicate that control should flow from the end of this clause tothe first statement of the next clause.Otherwise control flows to the end of the "switch" statement.
The expression may be preceded by a simple statement, whichexecutes before the expression is evaluated.
switch tag { default: s3() case 0, 1, 2, 3: s1() case 4, 5, 6, 7: s2() } switch x := f(); { // missing switch expression means "true" case x < 0: return -x default: return x } switch { case x < y: f1() case x < z: f2() case x == 4: f3() }
A type switch compares types rather than values. It is otherwise similarto an expression switch. It is marked by a special switch expression thathas the form of atype assertionusing the reserved word type
rather than an actual type.Cases then match literal types against the dynamic type of the expressionin the type assertion.
TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . TypeCaseClause = TypeSwitchCase ":" { Statement ";" } . TypeSwitchCase = "case" TypeList | "default" . TypeList = Type { "," Type } .
The TypeSwitchGuard may include ashort variable declaration.When that form is used, the variable is declared at the beginning oftheimplicit block in each clause.In clauses with a case listing exactly one type, the variablehas that type; otherwise, the variable has the type of the expressionin the TypeSwitchGuard.
The type in a case may be nil
(§Predeclared identifiers);that case is used when the expression in the TypeSwitchGuardis anil
interface value.
Given an expression x
of type interface{}
,the following type switch:
switch i := x.(type) { case nil: printString("x is nil") case int: printInt(i) // i is an int case float64: printFloat64(i) // i is a float64 case func(int) float64: printFunction(i) // i is a function case bool, string: printString("type is bool or string") // i is an interface{} default: printString("don't know the type") }
could be rewritten:
v := x // x is evaluated exactly once if v == nil { printString("x is nil") } else if i, isInt := v.(int); isInt { printInt(i) // i is an int } else if i, isFloat64 := v.(float64); isFloat64 { printFloat64(i) // i is a float64 } else if i, isFunc := v.(func(int) float64); isFunc { printFunction(i) // i is a function } else { i1, isBool := v.(bool) i2, isString := v.(string) if isBool || isString { i := v printString("type is bool or string") // i is an interface{} } else { i := v printString("don't know the type") // i is an interface{} } }
The type switch guard may be preceded by a simple statement, whichexecutes before the guard is evaluated.
在类型分支中是不允许存在 fallthrough 语句的。
A "for" statement specifies repeated execution of a block. The iteration iscontrolled by a condition, a "for" clause, or a "range" clause.
ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . Condition = Expression .
In its simplest form, a "for" statement specifies the repeated execution ofa block as long as a boolean condition evaluates to true.The condition is evaluated before each iteration.If the condition is absent, it is equivalent totrue
.
for a < b { a *= 2 }
A "for" statement with a ForClause is also controlled by its condition, butadditionally it may specify aninitand a post statement, such as an assignment,an increment or decrement statement. The init statement may be ashort variable declaration, but the post statement must not.
ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . InitStmt = SimpleStmt . PostStmt = SimpleStmt .
for i := 0; i < 10; i++ { f(i) }
If non-empty, the init statement is executed once before evaluating thecondition for the first iteration;the post statement is executed after each execution of the block (andonly if the block was executed).Any element of the ForClause may be empty but thesemicolons arerequired unless there is only a condition.If the condition is absent, it is equivalent totrue
.
for cond { S() } is the same as for ; cond ; { S() } for { S() } is the same as for true { S() }
A "for" statement with a "range" clauseiterates through all entries of an array, slice, string or map,or values received on a channel. For each entry it assignsiteration valuesto corresponding iteration variables and then executes the block.
RangeClause = Expression [ "," Expression ] ( "=" | ":=" ) "range" Expression .
The expression on the right in the "range" clause is called the range expression,which may be an array, pointer to an array, slice, string, map, or channel.As with an assignment, the operands on the left must beaddressable or map index expressions; theydenote the iteration variables. If the range expression is a channel, onlyone iteration variable is permitted, otherwise there may be one or two.If the second iteration variable is theblank identifier,the range clause is equivalent to the same clause with only the first variable present.
The range expression is evaluated once before beginning the loopexcept if the expression is an array, in which case, depending onthe expression, it might not be evaluated (see below).Function calls on the left are evaluated once per iteration.For each iteration, iteration values are produced as follows:
Range expression 1st value 2nd value (if 2nd variable is present) array or slice a [n]E, *[n]E, or []E index i int a[i] E string s string type index i int see below rune map m map[K]V key k K m[k] V channel c chan E element e E
a
, the index iterationvalues are produced in increasing order, starting at element index 0. As a specialcase, if only the first iteration variable is present, the range loop producesiteration values from 0 up to len(a)
and does not index into the arrayor slice itself. For anil
slice, the number of iterations is 0.rune
, will be the value ofthe corresponding code point. If the iteration encounters an invalidUTF-8 sequence, the second value will be0xFFFD
,the Unicode replacement character, and the next iteration will advancea single byte in the string.nil
, the number of iterations is 0.nil
, the range expression blocks forever.The iteration values are assigned to the respectiveiteration variables as in anassignment statement.
The iteration variables may be declared by the "range" clause using a form ofshort variable declaration(:=
).In this case their types are set to the types of the respective iteration valuesand their scope ends at the end of the "for"statement; they are re-used in each iteration.If the iteration variables are declared outside the "for" statement,after execution their values will be those of the last iteration.
var testdata *struct { a *[7]int } for i, _ := range testdata.a { // testdata.a is never evaluated; len(testdata.a) is constant // i ranges from 0 to 6 f(i) } var a [10]string m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} for i, s := range a { // type of i is int // type of s is string // s == a[i] g(i, s) } var key string var val interface {} // value type of m is assignable to val for key, val = range m { h(key, val) } // key == last map key encountered in iteration // val == map[key] var ch chan Work = producer() for w := range ch { doWork(w) }
一个 “go” 语句在一个独立的控制线程中执行一个函数或是方法调用;这个线程或是叫做goroutine,它和原来的线程在同一地址空间中。
GoStmt = "go" Expression .
表达式必须是能够调用的。在调用的 go 例程中函数值和参数都会被正常求值;不过不像常规的函数调用,这个 go 例程不会等待调用函数的结束;相反的,函数在一个新的例程中开始执行。在函数终止的时候,这个 go 例程也就终止了;如果函数有返回值,那它们会被忽略掉。
go Server() go func(ch chan<- bool) { for { sleep(10); ch <- true; }} (c)
A "select" statement chooses which of a set of possible communicationswill proceed. It looks similar to a "switch" statement but with thecases all referring to communication operations.
SelectStmt = "select" "{" { CommClause } "}" . CommClause = CommCase ":" { Statement ";" } . CommCase = "case" ( SendStmt | RecvStmt ) | "default" . RecvStmt = [ Expression [ "," Expression ] ( "=" | ":=" ) ] RecvExpr . RecvExpr = Expression .
RecvExpr must be a 接收语句.For all the cases in the "select"statement, the channel expressions are evaluated in top-to-bottom order, along withany expressions that appear on the right hand side of send statements.A channel may benil
,which is equivalent to that case notbeing present in the select statementexcept, if a send, its expression is still evaluated.If any of the resulting operations can proceed, one of those ischosen and the corresponding communication and statements areevaluated. Otherwise, if there is a default case, that executes;if there is no default case, the statement blocks until one of the communications cancomplete.If there are no cases with non-nil
channels,the statement blocks forever.Even if the statement blocks,the channel and send expressions are evaluated only once,upon entering the select statement.
Since all the channels and send expressions are evaluated, any sideeffects in that evaluation will occur for all the communicationsin the "select" statement.
If multiple cases can proceed, a uniform pseudo-random choice is made to decidewhich single communication will execute.
The receive case may declare one or two new variables using ashort variable declaration.
var c, c1, c2, c3 chan int var i1, i2 int select { case i1 = <-c1: print("received ", i1, " from c1\n") case c2 <- i2: print("sent ", i2, " to c2\n") case i3, ok := (<-c3): // same as: i3, ok := <-c3 if ok { print("received ", i3, " from c3\n") } else { print("c3 is closed\n") } default: print("no communication\n") } for { // send random sequence of bits to c select { case c <- 0: // note: no statement, no fallthrough, no folding of cases case c <- 1: } } select {} // block forever
A "return" statement terminates execution of the containing functionand optionally provides a result value or values to the caller.
ReturnStmt = "return" [ ExpressionList ] .
In a function without a result type, a "return" statement must notspecify any result values.
func noResult() { return }
There are three ways to return values from a function with a resulttype:
func simpleF() int { return 2 } func complexF1() (re float64, im float64) { return -7.0, -4.0 }
func complexF2() (re float64, im float64) { return complexF1() }
func complexF3() (re float64, im float64) { re = 7.0 im = 4.0 return } func (devnull) Write(p []byte) (n int, _ error) { n = len(p) return }
Regardless of how they are declared, all the result values are initialized to the zero values for their type (§The zero value) upon entry to the function.
A "break" statement terminates execution of the innermost"for", "switch" or "select" statement.
BreakStmt = "break" [ Label ] .
If there is a label, it must be that of an enclosing"for", "switch" or "select" statement, and that is the one whose executionterminates(§For statements, §Switch statements, §Select statements).
L: for i < n { switch i { case 5: break L } }
A "continue" statement begins the next iteration of theinnermost "for" loop at its post statement (§For statements).
ContinueStmt = "continue" [ Label ] .
If there is a label, it must be that of an enclosing"for" statement, and that is the one whose executionadvances(§For statements).
A "goto" statement transfers control to the statement with the corresponding label.
GotoStmt = "goto" Label .
goto Error
Executing the "goto" statement must not cause any variables to come intoscope that were not already in scope at the point of the goto.For instance, this example:
goto L // BAD v := 3 L:
is erroneous because the jump to label L
skipsthe creation of v
.
A "goto" statement outside a block cannot jump to a label inside that block.For instance, this example:
if n%2 == 1 { goto L1 } for n > 0 { f() n-- L1: f() n-- }
is erroneous because the label L1
is insidethe "for" statement's block but thegoto
is not.
A "fallthrough" statement transfers control to the first statement of thenext case clause in a expression "switch" statement (§Expression switches). It maybe used only as the final non-empty statement in a case or default clause in anexpression "switch" statement.
FallthroughStmt = "fallthrough" .
A "defer" statement invokes a function whose execution is deferred to the momentthe surrounding function returns.
DeferStmt = "defer" Expression .
The expression must be a function or method call.Each time the "defer" statementexecutes, the function value and parameters to the call areevaluated as usualand saved anew but theactual function is not invoked.Instead, deferred calls are executed in LIFO orderimmediately before the surrounding function returns,after the return values, if any, have been evaluated, but before theyare returned to the caller. For instance, if the deferred function isa function literal and the surroundingfunction has named result parameters thatare in scope within the literal, the deferred function may access and modifythe result parameters before they are returned.If the deferred function has any return values, they are discarded whenthe function completes.
lock(l) defer unlock(l) // unlocking happens before surrounding function returns // prints 3 2 1 0 before surrounding function returns for i := 0; i <= 3; i++ { defer fmt.Print(i) } // f returns 1 func f() (result int) { defer func() { result++ }() return 0 }
内置函数都是预声明的。它们可以像其他函数一样被调用,不过有些函数接受一个类型而不是一个值作为第一个参数。
内置函数并没有标准的 Go 类型,所以它们只可以出现在调用表达式中,而不能当函数值。
BuiltinCall = identifier "(" [ BuiltinArgs [ "," ] ] ")" . BuiltinArgs = Type [ "," ExpressionList ] | ExpressionList .
对一个管道c
来说,内置函数close(c)
说明不再往管道中发送数据。如果c
只是个接收管道,那这就是一个错误。向一个关闭的管道发送数据或是再次关闭都会引起一个run-time panic。关闭 nil 管道同样引起run-time panic。调用close
,并且所有先前发送的数据接收完毕之后,接收操作会根据管道的类型返回一个 0 值,但不会引起阻塞。使用多值接收操作可以得到一个测试管道是否关闭的标志。
内置函数len
and cap
接收多种类型作为参数,返回一个int
类型的值。实现保证返回的结果可以适合int
。
Call Argument type Result len(s) string type 字符串的字节长度 [n]T, *[n]T 数组长度 (== n) []T 分片长度 map[K]T map 长度(key 的数量) chan T 管道缓冲区中派对元素的数量 cap(s) [n]T, *[n]T 数组长度 (== n) []T 分片容量 chan T 管道缓冲区容量
一个分片的容量就是它底层的数组为它提供的元素个数。任何时候都必须满足一下关系:
0 <= len(s) <= cap(s)
nil
分片、map 或是管道的长度和容量都是 0 。
当s
是一个字符串常量的时候,len(s)
表达式也是常量。只要s
的类型是数组类型或是指向数组的指针类型,并且s
表达式不包括管道接收和函数调用,那么len(s)
和cap(s)
都是常量,并不用去计算s
。而其他情况下,对len
和cap
的调用就不是常量,需要计算s
而得。
内置函数new
接受一个类型参数T
然后返回*T
类型的一个值。存储空间会按初始化(§0 值)那里说明的对值进行初始化。
new(T)
举个例子:
type S struct { a int; b float64 } new(S)
会动态地为S
类型的变量分配空间,将值初始化为(a=0
, b=0.0
),然后返回一个*S
的值,这个值是分配空间的地址。
分片、map 和管道都是引用类型,所以不需要使用new
来分配间址访问的空间。内置函数make
带有一个类型T
,必须是分片、map或是管道类型,后面跟着可选的跟类型有关的表达式。它返回的值的类型是T
(而不是*T
)。存储空间也会按照初始化(§0 值)那里说明的对值进行初始化。
调用 类型T 结果 make(T, n) slice 长度可容量都是 n 的分片 make(T, n, m) slice 长度是 n 容量是 m 的分片 make(T) map T 类型的 map make(T, n) map T 类型的 map,有 n 个经过初始化的元素 make(T) channel T 类型的同步管道 make(T, n) channel 带有长度为 n 的缓冲去的 T 类型的异步管道
参数n
和m
必须是整型类型。如果n
是个负数或是比m
还大,亦或是n
或是m
不能用int
表示,那么会有一个运行时问题出现。
s := make([]int, 10, 100) // len(s) == 10, cap(s) == 100 的分片 s := make([]int, 10) // len(s) == cap(s) == 10 的分片 c := make(chan int, 10) // 缓冲区长度为 10 的管道 m := make(map[string]int, 100) // 有 100 个初始化元素的 map
Two built-in functions assist in common slice operations.
The variadic function append
appends zero or more values x
tos
of type S
, which must be a slice type, andreturns the resulting slice, also of typeS
.The values x
are passed to a parameter of type ...T
where T
is the element type ofS
and the respectiveparameter passing rules apply.As a special case,append
also accepts a first argumentassignable to type []byte
with a second argument ofstring type followed by...
. This form appends thebytes of the string.
append(s S, x ...T) S // T is the element type of S
If the capacity of s
is not large enough to fit the additionalvalues,append
allocates a new, sufficiently large slice that fitsboth the existing slice elements and the additional values. Thus, the returnedslice may refer to a different underlying array.
s0 := []int{0, 0} s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} var t []interface{} t = append(t, 42, 3.1415, "foo") t == []interface{}{42, 3.1415, "foo"} var b []byte b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' }
The function copy
copies slice elements froma source src
to a destinationdst
and returns thenumber of elements copied. Source and destination may overlap.Both arguments must haveidentical element type T
and must beassignable to a slice of type[]T
.The number of elements copied is the minimum oflen(src)
andlen(dst)
.As a special case, copy
also accepts a destination argument assignableto type[]byte
with a source argument of a string type.This form copies the bytes from the string into the byte slice.
copy(dst, src []T) int copy(dst []byte, src string) int
Examples:
var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} var s = make([]int, 6) var b = make([]byte, 5) n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello")
内置函数delete
可以从mapm
中删除键值为k
的元素,而k
的类型对于m
的key类型来说必须是assignable。
delete(m, k) // remove element m[k] from map m
如果元素m[k]
不存在的话, delete
不执行其他操作;如果对 nil 进行delete
调用引起一个run-time panic。
Three functions assemble and disassemble complex numbers.The built-in functioncomplex
constructs a complexvalue from a floating-point real and imaginary part, whilereal
andimag
extract the real and imaginary parts of a complex value.
complex(realPart, imaginaryPart floatT) complexT real(complexT) floatT imag(complexT) floatT
The type of the arguments and return value correspond.For complex
, the two arguments must be of the samefloating-point type and the return type is the complex typewith the corresponding floating-point constituents:complex64
forfloat32
,complex128
for float64
.The real
andimag
functionstogether form the inverse, so for a complex value z
,z
==
complex(real(z),
imag(z))
.
If the operands of these functions are all 常量, the returnvalue is a constant.
var a = complex(2, -2) // complex128 var b = complex(1.0, -1.4) // complex128 x := float32(math.Cos(math.Pi/2)) // float32 var c64 = complex(5, -x) // complex64 var im = imag(b) // float64 var rl = real(c64) // float32
Two built-in functions, panic
and recover
,assist in reporting and handlingrun-time panicsand program-defined error conditions.
func panic(interface{}) func recover() interface{}
When a function F
calls panic
, normalexecution of F
stops immediately. Any functions whoseexecution was deferred by theinvocation of F
are run in the usual way, and thenF
returns to its caller. To the caller,F
then behaves like a call to panic
, terminating its ownexecution and running deferred functions. This continues until allfunctions in the goroutine have ceased execution, in reverse order.At that point, the program isterminated and the error condition is reported, including the value ofthe argument to panic
. This termination sequence iscalledpanicking.
panic(42) panic("unreachable") panic(Error("cannot parse"))
The recover
function allows a program to manage behaviorof a panicking goroutine. Executing arecover
callinside a deferred function (but not any function called by it) stopsthe panicking sequence by restoring normal execution, and retrievesthe error value passed to the call ofpanic
. Ifrecover
is called outside the deferred function it willnot stop a panicking sequence. In this case, or when the goroutineis not panicking, or if the argument supplied topanic
was nil
, recover
returns nil
.
The protect
function in the example below invokesthe function argumentg
and protects callers fromrun-time panics raised by g
.
func protect(g func()) { defer func() { log.Println("done") // Println executes normally even if there is a panic if x := recover(); x != nil { log.Printf("run time panic: %v", x) } }() log.Println("start") g() }
当前的实现提供了几个内置的有用的引导函数。为了完整性,我们在这里也对它们进行说明,然而不会保证语言中一直存在。它们不返回结果。
函数 行为 print 输出所有的参数;参数的格式化是跟实现有关的; println 跟 print 函数类型,不过这里在参数之间加上空白以及在结束的时候添加换行;
Go 程序是由链接在一起的包构成的。而每一个包则是由一个或是多个源文件构建起来的,源文件中包含常量、类型、变量、函数声明以及一些其他属于包的可以包内访问的东西。这些元素可以导出,然后为另外一个包所使用。
每一个源文件由若干部分构成,首先是一个定义了该文件所属的包子句;其次是一系列的可以为空的包的导入声明,声明希望使用的包;紧接着可以是一些函数、类型、变量或是常量声明,不过也可以么有。
SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
每个源文件开始于一个包子句,该子句定义了该文件属于的包。
PackageClause = "package" PackageName . PackageName = identifier .
PackageName 不能是空白标识符。
package math
多个文件可能共享同一个 PackageName,这时候它们构成包的一个实现。一个包的实现应满足所有的源文件位于相同的目录下。
An import declaration states that the source file containing the declarationdepends on functionality of theimported package(§Program initialization and execution)and it enables access toexported identifiersof that package.The import names an identifier (PackageName) to be used for access and an ImportPaththat specifies the package to be imported.
ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . ImportSpec = [ "." | PackageName ] ImportPath . ImportPath = string_lit .
The PackageName is used in qualified identifiersto access exported identifiers of the package within the importing source file.It is declared in thefile block.If the PackageName is omitted, it defaults to the identifier specified in thepackage clause of the imported package.If an explicit period (.
) appears instead of a name, all thepackage's exported identifiers declared in that package'spackage block will be declared in the importing sourcefile's file block and can be accessed without a qualifier.
The interpretation of the ImportPath is implementation-dependent butit is typically a substring of the full file name of the compiledpackage and may be relative to a repository of installed packages.
Implementation restriction: A compiler may restrict ImportPaths tonon-empty strings using only characters belonging toUnicode'sL, M, N, P, and S general categories (the Graphic characters withoutspaces) and may also exclude the characters!"#$%&'()*,:;<=>?[\]^`{|}
and the Unicode replacement character U+FFFD.
Assume we have compiled a package containing the package clausepackage math
, which exports functionSin
, andinstalled the compiled package in the file identified by"lib/math"
.This table illustrates howSin
may be accessed in filesthat import the package after thevarious types of import declaration.
Import declaration Local name of Sin import "lib/math" math.Sin import M "lib/math" M.Sin import . "lib/math" Sin
An import declaration declares a dependency relation betweenthe importing and imported package.It is illegal for a package to import itself or to import a package withoutreferring to any of its exported identifiers. To import a package solely forits side-effects (initialization), use the blankidentifier as explicit package name:
import _ "lib/math"
下面是一个实现了并发的素数筛的完整的 Go 包:
package main import "fmt" // Send the sequence 2, 3, 4, … to channel 'ch'. func generate(ch chan<- int) { for i := 2; ; i++ { ch <- i // Send 'i' to channel 'ch'. } } // Copy the values from channel 'src' to channel 'dst', // removing those divisible by 'prime'. func filter(src <-chan int, dst chan<- int, prime int) { for i := range src { // Loop over values received from 'src'. if i%prime != 0 { dst <- i // Send 'i' to channel 'dst'. } } } // The prime sieve: Daisy-chain filter processes together. func sieve() { ch := make(chan int) // Create a new channel. go generate(ch) // Start generate() as a subprocess. for { prime := <-ch fmt.Print(prime, "\n") ch1 := make(chan int) go filter(ch, ch1, prime) ch = ch1 } } func main() { sieve() }
不管是通过声明,还是make
或是new
,只要为了保存一个值创造了空间但是却没有显式地初始化,那么这些空间都有默认值。 这样的值的每一个元素都会根据它的类型被0 值化:对布尔类型值是false
,对整数值是0
,对浮点数值是0.0
,对字符串是""
,其他剩下的nil
的指针、函数、接口、分片、管道和映射等都是nil
。而且这个初始化是递归进行的,所以说,如果是个结构体数组的话,那么,里面的每一个元素都会被 0 值,只要它没有被指定。
下面的两个简单声明等价:
var i int var i int = 0
看下面
type T struct { i int; f float64; next *T } t := new(T)
接下来有结果:
t.i == 0 t.f == 0.0 t.next == nil
当然,如果是下面还是一样:
var t T
A package with no imports is initialized by assigning initial values toall its package-level variablesand then calling anypackage-level function with the name and signature of
func init()
defined in its source.A package may contain multipleinit
functions, evenwithin a single source file; they executein unspecified order.
Within a package, package-level variables are initialized,and constant values are determined, indata-dependent order: if the initializer ofA
depends on the value of B
, A
will be set afterB
.It is an error if such dependencies form a cycle.Dependency analysis is done lexically:A
depends on B
if the value of A
contains a mention ofB
, contains a valuewhose initializermentions B
, or mentions a function thatmentionsB
, recursively.If two items are not interdependent, they will be initializedin the order they appear in the source.Since the dependency analysis is done per package, it can produceunspecified results ifA
's initializer calls a function definedin another package that refers toB
.
An init
function cannot be referred to from anywherein a program. In particular,init
cannot be called explicitly,nor can a pointer to init
be assigned to a function variable.
If a package has imports, the imported packages are initializedbefore initializing the package itself. If multiple packages importa packageP
, P
will be initialized only once.
The importing of packages, by construction, guarantees that there canbe no cyclic dependencies in initialization.
A complete program is created by linking a single, unimported packagecalled themain package with all the packages it imports, transitively.The main package musthave package namemain
anddeclare a function main
that takes noarguments and returns no value.
func main() { … }
Program execution begins by initializing the main package and theninvoking the functionmain
.When the function main
returns, the program exits.It does not wait for other (non-main
) goroutines to complete.
Package initialization—variable initialization and the invocation ofinit
functions—happens in a single goroutine,sequentially, one package at a time.Aninit
function may launch other goroutines, which can runconcurrently with the initialization code. However, initializationalways sequencestheinit
functions: it will not start the nextinit
untilthe previous one has returned.
预声明的类型error
定义如下:
type error interface { Error() string }
对于表示一个错误条件来说,这是个灰常方便的接口,如果没有错误的话就是 nil。比如说,一个从文件中读数据的函数可能是这样定义的:
func Read(f *File, b []byte) (n int, err error)
在程序执行的过程中,如果出现访问数组越界这些错误就会触发一个运行时问题。不过也可以通过调用内置函数panic
来实现,这个函数带有一个实现定义的接口类型runtime.Error
的值;这个值只要满足预声明的接口类型error
就好。而实际的表示不同运行问题信息的值则不做具体指定。
package runtime type Error interface { error // and perhaps other methods }
unsafe
The built-in package unsafe
, known to the compiler,provides facilities for low-level programming including operationsthat violate the type system. A package usingunsafe
must be vetted manually for type safety. The package provides thefollowing interface:
package unsafe type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type type Pointer *ArbitraryType func Alignof(variable ArbitraryType) uintptr func Offsetof(selector ArbitraryType) uintptr func Sizeof(variable ArbitraryType) uintptr
Any pointer or value of underlying type uintptr
can be converted intoa Pointer
and vice versa.
The function Sizeof
takes an expression denoting avariable of any type and returns the size of the variable in bytes.
The function Offsetof
takes a selector (§Selectors) denoting a structfield of any type and returns the field offset in bytes relative to thestruct's address.For a struct s
with field f
:
uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f))
Computer architectures may require memory addresses to be aligned;that is, for addresses of a variable to be a multiple of a factor,the variable's type'salignment. The function Alignof
takes an expression denoting a variable of any type and returns thealignment of the (type of the) variable in bytes. For a variablex
:
uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0
Calls to Alignof
, Offsetof
, andSizeof
are compile-time constant expressions of typeuintptr
.
对于数值类型(§数值类型)来说,下面的大小必须保证:
type size in bytes byte, uint8, int8 1 uint16, int16 2 uint32, int32, float32 4 uint64, int64, float64, complex64 8 complex128 16
下面的最小对齐属性也必须保证:
x
:unsafe.Alignof(x)
至少是 1。x
:unsafe.Alignof(x)
是x
中的所有f
的unsafe.Alignof(x.f)
的最大值,至少是 1 。x
:unsafe.Alignof(x)
和unsafe.Alignof(x[0])
是一样的, 至少是 1 。一个结构体或是数组类型,如果不含有尺寸大于0 的任何字段(或是说元素),那么这种类型的大小是 0 。两个不同的 0 尺寸的变量可能在内存中会有相同的地址。
版本 go1.0.3.