mapreduce编程实例(1)-统计词频

今天开始把MapReduce Design Patterns这本书上的mapreduce例子过一遍,我觉得这本书对学mapreduce编程非常好,把这本书看完了,基本上能遇到的mapreduce问题也都能处理了。下面开始第一篇吧。这个程序是统计一个名为comment.xml中的词频。直接上代码吧。

//解析xml文件,并存入map中。
package mrdp.utils;

import java.util.HashMap;
import java.util.Map;

public class MRDPUtils {
	
	public static final String[] REDIS_INSTANCES = { "p0", "p1", "p2", "p3",
			"p4", "p6" };

	// This helper function parses the stackoverflow into a Map for us.
	public static Map<String, String> transformXmlToMap(String xml) {
		Map<String, String> map = new HashMap<String, String>();
		try {
			String[] tokens = xml.trim().substring(5, xml.trim().length() - 3)
					.split("\"");

			for (int i = 0; i < tokens.length - 1; i += 2) {
				String key = tokens[i].trim();
				String val = tokens[i + 1];

				map.put(key.substring(0, key.length() - 1), val);
			}
		} catch (StringIndexOutOfBoundsException e) {
			System.err.println(xml);
		}

		return map;
	}
}

//主程序
package mrdp.ch1;

import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Map;

import mrdp.utils.MRDPUtils;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.commons.lang.StringEscapeUtils;

public class CommentWordCount {

	public static class SOWordCountMapper extends
			Mapper<Object, Text, Text, IntWritable> {

		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {

			// Parse the input string into a nice map
			Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
					.toString());

			// Grab the "Text" field, since that is what we are counting over
			String txt = parsed.get("Text");

			// .get will return null if the key is not there
			if (txt == null) {
				// skip this record
				return;
			}

			// Unescape the HTML because the SO data is escaped.
			txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());

			// Remove some annoying punctuation
			txt = txt.replaceAll("'", ""); // remove single quotes (e.g., can't)
			txt = txt.replaceAll("[^a-zA-Z]", " "); // replace the rest with a  space
													

			// Tokenize the string, then send the tokens away
			StringTokenizer itr = new StringTokenizer(txt);
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);
			}
		}
	}

	public static class IntSumReducer extends
			Reducer<Text, IntWritable, Text, IntWritable> {
		private IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			int sum = 0;
			for (IntWritable val : values) {
				sum += val.get();
			}

			result.set(sum);
			context.write(key, result);

		}
	}

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		String[] otherArgs = new GenericOptionsParser(conf, args)
				.getRemainingArgs();
		if (otherArgs.length != 2) {
			System.err.println("Usage: CommentWordCount <in> <out>");
			System.exit(2);
		}
		@SuppressWarnings("deprecation")
		Job job = new Job(conf, "StackOverflow Comment Word Count");
		job.setJarByClass(CommentWordCount.class);
		job.setMapperClass(SOWordCountMapper.class);
		job.setCombinerClass(IntSumReducer.class);
		job.setReducerClass(IntSumReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}
这个程序就不用过多解释了,只要会java和稍微看过wordcount的人都知道的

我的mapreduce程序是在eclipse上调试的,在运行此程序时需要填写参数,即在run configuration中填上自己的hdfs地址,如我的参数是:

hdfs://localhost:8010/user/jpan/comments.xml  hdfs://localhost:8010/user/jpan/output1

测试数据的链接在http://pan.baidu.com/s/1c0xP6Dy,里面有comment.xml文件,另外一些文件我们会在后面用到。

MapReduce Design Patterns这本书的链接http://pan.baidu.com/s/1jGt96Hg


你可能感兴趣的:(java,mapreduce,hadoop)