Problem A: EXPRESSIONS
Let X be the set of correctly built parenthesis expressions. The elements of X are strings consisting only of the characters �(� and �)�. The set X is defined as follows:
()(())()
(()(()))
The expressions below are not correctly built parenthesis expressions (and are thus not in X):
(()))(()
())(()
Let E be a correctly built parenthesis expression (therefore E is a string belonging to X).
The length of E is the number of single parenthesis (characters) in E.
The depth D(E) of E is defined as follows:
ì 0 if E is empty
D(E)= í D(A)+1 if E = (A), and A is in X
î max(D(A),D(B)) if E = AB, and A, B are in X
For example, the length of �()(())()� is 8, and its depth is 2.
What is the number of correctly built parenthesis expressions of length n and depth d, for given positive integers n and d?
Task
Write a program which
Output data
For every pair of integers in the input write single integer on one line - the number of correctly built parenthesis expressions of length n and depth d.
Example
Input data Output data
6 2 3
300 150 1
There are exactly three correctly built parenthesis expressions of length 6 and depth 2:
(())()
()(())
(()())
题意:求长度n,深度最多为d的括号种数。
思路:dp,dp[i][j]表示长度i,深度不超过j的种数,对于每种情况,取最左边的括号和右边每个位置进行匹配,剩下的为内部和外部两部分,种数为dp[k][j - 1]*dp[i - k - 1][j]。然后把所有加起来即可
代码:
#include <stdio.h> #include <string.h> #include <math.h> const int MAXN = 155; #define max(a,b) (a)>(b)?(a):(b) #define min(a,b) (a)<(b)?(a):(b) const int MAXSIZE = 1005; struct bign { int s[MAXSIZE]; bign () {memset(s, 0, sizeof(s));} bign (int number) {*this = number;} bign (const char* number) {*this = number;} void put(); bign mul(int d); void del(); bign operator = (char *num); bign operator = (int num); bool operator < (const bign& b) const; bool operator > (const bign& b) const { return b < *this; } bool operator <= (const bign& b) const { return !(b < *this); } bool operator >= (const bign& b) const { return !(*this < b); } bool operator != (const bign& b) const { return b < *this || *this < b;} bool operator == (const bign& b) const { return !(b != *this); } bign operator + (const bign& c); bign operator * (const bign& c); bign operator - (const bign& c); int operator / (const bign& c); bign operator / (int k); bign operator % (const bign &c); int operator % (int k); void operator ++ (); bool operator -- (); }; bign bign::operator = (char *num) { s[0] = strlen(num); for (int i = 1; i <= s[0]; i++) s[i] = num[s[0] - i] - '0'; return *this; } bign bign::operator = (int num) { char str[MAXSIZE]; sprintf(str, "%d", num); return *this = str; } bool bign::operator < (const bign& b) const { if (s[0] != b.s[0]) return s[0] < b.s[0]; for (int i = s[0]; i; i--) if (s[i] != b.s[i]) return s[i] < b.s[i]; return false; } bign bign::operator + (const bign& c) { int sum = 0; bign ans; ans.s[0] = max(s[0], c.s[0]); for (int i = 1; i <= ans.s[0]; i++) { if (i <= s[0]) sum += s[i]; if (i <= c.s[0]) sum += c.s[i]; ans.s[i] = sum % 10; sum /= 10; } while (sum) { ans.s[++ans.s[0]] = sum % 10; sum /= 10; } return ans; } bign bign::operator * (const bign& c) { bign ans; ans.s[0] = 0; for (int i = 1; i <= c.s[0]; i++){ int g = 0; for (int j = 1; j <= s[0]; j++){ int x = s[j] * c.s[i] + g + ans.s[i + j - 1]; ans.s[i + j - 1] = x % 10; g = x / 10; } int t = i + s[0] - 1; while (g){ ++t; g += ans.s[t]; ans.s[t] = g % 10; g = g / 10; } ans.s[0] = max(ans.s[0], t); } ans.del(); return ans; } bign bign::operator - (const bign& c) { bign ans = *this; int i; for (i = 1; i <= c.s[0]; i++) { if (ans.s[i] < c.s[i]) { ans.s[i] += 10; ans.s[i + 1]--;; } ans.s[i] -= c.s[i]; } for (i = 1; i <= ans.s[0]; i++) { if (ans.s[i] < 0) { ans.s[i] += 10; ans.s[i + 1]--; } } ans.del(); return ans; } int bign::operator / (const bign& c) { int ans = 0; bign d = *this; while (d >= c) { d = d - c; ans++; } return ans; } bign bign::operator / (int k) { bign ans; ans.s[0] = s[0]; int num = 0; for (int i = s[0]; i; i--) { num = num * 10 + s[i]; ans.s[i] = num / k; num = num % k; } ans.del(); return ans; } int bign:: operator % (int k){ int sum = 0; for (int i = s[0]; i; i--){ sum = sum * 10 + s[i]; sum = sum % k; } return sum; } bign bign::operator % (const bign &c) { bign now = *this; while (now >= c) { now = now - c; now.del(); } return now; } void bign::operator ++ () { s[1]++; for (int i = 1; s[i] == 10; i++) { s[i] = 0; s[i + 1]++; s[0] = max(s[0], i + 1); } } bool bign::operator -- () { del(); if (s[0] == 1 && s[1] == 0) return false; int i; for (i = 1; s[i] == 0; i++) s[i] = 9; s[i]--; del(); return true; } void bign::put() { if (s[0] == 0) printf("0"); else for (int i = s[0]; i; i--) printf("%d", s[i]); } bign bign::mul(int d) { s[0] += d; int i; for (i = s[0]; i > d; i--) s[i] = s[i - d]; for (i = d; i; i--) s[i] = 0; return *this; } void bign::del() { while (s[s[0]] == 0) { s[0]--; if (s[0] == 0) break; } } int n, d; bign f[MAXN][MAXN]; void init() { int i, j, k; for (i = 0; i <= 150; i ++) f[0][i] = 1; for (i = 1; i <= 150; i ++) { for (j = 1; j <= 150; j ++) { for (k = 0; k < i; k ++) { f[i][j] = f[k][j - 1] * f[i - k - 1][j] + f[i][j]; } } } } int main() { init(); while (~scanf("%d%d", &n, &d)) { (f[n / 2][d] - f[n / 2][d - 1]).put(); printf("\n"); } return 0; }