Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 15924 | Accepted: 5794 |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
Source
题意:有n个数字,m次查询,每次询问区间[L,R]中出现最多次数的数字,输出最多次数。
题解:先说思路,我们每次查询[L,R]区间,左区间L有可能不是某个数字X的开始位置,那么我们可能会多算了一些长度,那么我们就要设法把这不完整的一段删去,那么我们可以这么处理,把X的[最后出现的下标-当前下标],这段长度就是X的长度,去掉了数字X的干扰,使得查找区间变为[最后出现X的下标+1,y ]。这里需要考虑一个特殊情况,就是如果区间[L,R]是属于同一个数字,那么就是输出(R-L+1)。详情见下图:
先使用结构体数组记录记录每个数字是第几次出现和数字本身。然后记录每个数字最后出现的下标(建议使用map是最好的),
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<set> #include<queue> #include<string> #include<bitset> #include<utility> #include<functional> #include<iomanip> #include<sstream> #include<ctime> using namespace std; #define N int(1e5+10) #define inf int(0x3f3f3f3f) #define mod int(1e9+7) typedef long long LL; #ifdef CDZSC #define debug(...) fprintf(stderr, __VA_ARGS__) #else #define debug(...) #endif int dmax[N][32]; void RMQ(vector< pair<int, int> >&A) { int n = A.size(); for (int i = 0; i<n; i++)dmax[i][0] = A[i].first; for (int j = 1; (1 << j) <= n; j++) { for (int i = 0; i + (1 << j) - 1<n; i++) { dmax[i][j] = max(dmax[i][j - 1], dmax[i + (1 << (j - 1))][j - 1]); } } } int query_max(int L, int R) { int k = 0; while ((1 << (k + 1)) <= R - L + 1)k++; return max(dmax[L][k], dmax[R - (1 << k) + 1][k]); } vector<pair<int, int> >v; int a[N]; map<int, int>w; int main() { #ifdef CDZSC freopen("i.txt", "r", stdin); //freopen("o.txt","w",stdout); int _time_jc = clock(); #endif int n, m, x, y; while (~scanf("%d", &n)) { w.clear();v.clear(); if (n == 0)break; scanf("%d", &m); for (int i = 0; i<n; i++)scanf("%d", &a[i]); int last = a[0]; w[a[0]] = 0; v.push_back(make_pair(1, a[0])); for (int i = 1; i<n; i++) { if (last == a[i]) { v.push_back(make_pair(v[i - 1].first + 1, a[i])); } else { v.push_back(make_pair(1, a[i])); last = a[i]; } w[a[i]] = i; } RMQ(v); while (m--) { int ans; scanf("%d%d", &x, &y); y--; x--; if (v[x].second == v[y].second) { printf("%d\n",y-x+1); continue; } ans = w[v[x].second] - x+1; x = w[v[x].second] + 1; printf("%d\n", max(ans, query_max(x, y))); } } #ifdef CDZSC debug("time: %d\n", int(clock() - _time_jc)); #endif return 0; }