Linux 内核分析——【实验五:系统调用运行机制】
前文提到系统调用是通过int 0x80来产生的,所以从本质上来说它是一种中断。那么什么是中断呢?中断被定义为一个事件,该事件改变了处理器执行的指令顺序。在linux系统下设置了256个中断,每个中断由0~255之间的数来标识,系统调用对应的就是0x80。
首先,我们总结一下系统调用的执行过程:
1、程序调用libc库中封装的系统调用函数。
2、调用中断int 0x80 陷入内核。
3、在内核中执行system_call函数(实际上是一段汇编代码),将系统调用号(eax)和可以所有相关寄存器保存到内核堆栈中(由SAVE_ALL完成),然后根据系统调用号在系统调用表中查找到对应的系统调用服务例程。
4、执行该服务例程。
5、执行完毕后,转入ret_from_sys_call 例程,从系统调用返回
接着,我们通过一个简单的例子,来了解系统调用函数在进入system_call到iret的执行过程。代码如下:
将断点设在system_call位置,可以看到system_call在一个entry_32.S的汇编文件中。继续执行,但gdb并没有在system_call的位置停止,而是直接运行结束了。
下面,我们直接打开entry_32.S文件,找到system_call的位置进行分析:
# system call handler stub
ENTRY(system_call) #系统调用处理入口(内核态)
RING0_INT_FRAME # can't unwind into user space anyway
ASM_CLAC
pushl_cfi %eax # save orig_eax #保存eax,也就是调用号
SAVE_ALL # 保存寄存器
GET_THREAD_INFO(%ebp) # 获取thread_info结构中ebp的值
# system call tracing in operation / emulation
testl $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp) # 检测是否由系统跟踪
jnz syscall_trace_entry # 有系统跟踪则先去执行
cmpl $(NR_syscalls), %eax # 比较输入的系统调用号 是否大于 最大的系统调用号
jae syscall_badsys # 大于 则无效,退出
syscall_call:
call *sys_call_table(,%eax,4) # 在系统调用表中的调用相应的服务例程,eax为调用号,4字节对齐
syscall_after_call:
movl %eax,PT_EAX(%esp) # store the return value # 保存返回值
syscall_exit:
LOCKDEP_SYS_EXIT # 用于调试,只有开启调试后才会检测系统调用深度
DISABLE_INTERRUPTS(CLBR_ANY) # make sure we don't miss an interrupt
# setting need_resched or sigpending
# between sampling and the iret
TRACE_IRQS_OFF # 关闭中断跟踪
movl TI_flags(%ebp), %ecx # 检测是否还有其他任务
testl $_TIF_ALLWORK_MASK, %ecx # current->work
jne syscall_exit_work
syscall_exit_work:
testl $_TIF_WORK_SYSCALL_EXIT, %ecx
jz work_pending # 测试是否退出前还有工作要处理,如果有的话跳转到work_pending
TRACE_IRQS_ON # 开启系统中断跟踪
ENABLE_INTERRUPTS(CLBR_ANY) # could let syscall_trace_leave() call
# 允许中断 # schedule() instead
movl %esp, %eax
call syscall_trace_leave
jmp resume_userspace # 恢复用户空间
END(syscall_exit_work)
work_pending:
testb $_TIF_NEED_RESCHED, %cl # 是否有需要继续调度的相关信号
jz work_notifysig # 跳转到处理信号相关的代码处
work_resched:
call schedule # 时间调度, 进程调度的时机在这里处理
LOCKDEP_SYS_EXIT
DISABLE_INTERRUPTS(CLBR_ANY) # make sure we don't miss an interrupt
# setting need_resched or sigpending
# between sampling and the iret
TRACE_IRQS_OFF
movl TI_flags(%ebp), %ecx
andl $_TIF_WORK_MASK, %ecx # is there any work to be done other 是否还有其他工作要处理
# than syscall tracing?
jz restore_all #如果没有的话就恢复中断上下文,也就是恢复进入之前保存的寄存器相关内容
testb $_TIF_NEED_RESCHED, %cl
jnz work_resched
work_notifysig: # deal with pending signals and
# notify-resume requests
#ifdef CONFIG_VM86
testl $X86_EFLAGS_VM, PT_EFLAGS(%esp)
movl %esp, %eax
jne work_notifysig_v86 # returning to kernel-space or
# vm86-space
restore_all:
TRACE_IRQS_IRET # 恢复中断跟踪
restore_all_notrace:
#ifdef CONFIG_X86_ESPFIX32
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
# Warning: PT_OLDSS(%esp) contains the wrong/random values if we
# are returning to the kernel.
# See comments in process.c:copy_thread() for details.
movb PT_OLDSS(%esp), %ah
movb PT_CS(%esp), %al
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
CFI_REMEMBER_STATE
je ldt_ss # returning to user-space with LDT SS
#endif
restore_nocheck:
RESTORE_REGS 4 # skip orig_eax/error_code
irq_return:
INTERRUPT_RETURN
系统调用函数的运行流程如下:
注意:系统调用的初始化工作,是在内核启动之初/linux-3.18.6/init/main.c文件中
start_kernel() —> trap_init() —> set_system_trap_gate(SYSCALL_VECTOR, &system_call);
附录:
查看系统调用号:linux-3.18.6/arch/x86/syscalls/syscall_32.tbl
# 32-bit system call numbers and entry vectors
#
# The format is:
# <number> <abi> <name> <entry point> <compat entry point>
#
# The abi is always "i386" for this file.
#
0 i386 restart_syscall sys_restart_syscall
1 i386 exit sys_exit
2 i386 fork sys_fork stub32_fork
3 i386 read sys_read
4 i386 write sys_write
5 i386 open sys_open compat_sys_open
6 i386 close sys_close
7 i386 waitpid sys_waitpid sys32_waitpid
8 i386 creat sys_creat
9 i386 link sys_link
10 i386 unlink sys_unlink
11 i386 execve sys_execve stub32_execve
12 i386 chdir sys_chdir
13 i386 time sys_time compat_sys_time
14 i386 mknod sys_mknod
15 i386 chmod sys_chmod
16 i386 lchown sys_lchown16
17 i386 break
18 i386 oldstat sys_stat
19 i386 lseek sys_lseek compat_sys_lseek
20 i386 getpid sys_getpid
21 i386 mount sys_mount compat_sys_mount
22 i386 umount sys_oldumount
23 i386 setuid sys_setuid16
24 i386 getuid sys_getuid16
25 i386 stime sys_stime compat_sys_stime
26 i386 ptrace sys_ptrace compat_sys_ptrace
27 i386 alarm sys_alarm
28 i386 oldfstat sys_fstat
29 i386 pause sys_pause
30 i386 utime sys_utime compat_sys_utime
31 i386 stty
32 i386 gtty
33 i386 access sys_access
34 i386 nice sys_nice
35 i386 ftime
36 i386 sync sys_sync
37 i386 kill sys_kill
38 i386 rename sys_rename
39 i386 mkdir sys_mkdir
40 i386 rmdir sys_rmdir
41 i386 dup sys_dup
42 i386 pipe sys_pipe
43 i386 times sys_times compat_sys_times
44 i386 prof
45 i386 brk sys_brk
46 i386 setgid sys_setgid16
47 i386 getgid sys_getgid16
48 i386 signal sys_signal
49 i386 geteuid sys_geteuid16
50 i386 getegid sys_getegid16
51 i386 acct sys_acct
52 i386 umount2 sys_umount
53 i386 lock
54 i386 ioctl sys_ioctl compat_sys_ioctl
55 i386 fcntl sys_fcntl compat_sys_fcntl64
56 i386 mpx
57 i386 setpgid sys_setpgid
58 i386 ulimit
59 i386 oldolduname sys_olduname
60 i386 umask sys_umask
61 i386 chroot sys_chroot
62 i386 ustat sys_ustat compat_sys_ustat
63 i386 dup2 sys_dup2
64 i386 getppid sys_getppid
65 i386 getpgrp sys_getpgrp
66 i386 setsid sys_setsid
67 i386 sigaction
... ...
=========== 王杰 原创作品转载请注明出处==============
《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000