- 1914. 循环轮转矩阵
Joyner2018
python矩阵算法线性代数深度优先leetcodepython开发语言
矩阵的循环轮转(按层逆时针旋转)详解及代码实现题目描述给定一个大小为m×nm\timesnm×n的整数矩阵grid,其中m和n都是偶数;同时给定一个整数kkk。矩阵由若干层组成,每层是矩阵中从外围到内圈的同心环。题目要求对矩阵中的每一层分别进行逆时针循环轮转操作,共执行kkk次。具体来说,一次循环轮转操作是将该层中的每个元素向逆时针方向移动一格。例如,最外层的元素按逆时针方向整体移动一次位置;同理
- 《三生原理》如何解决长程依赖问题?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《三生原理》通过融合《周易》的生成哲学与分形数学,创新性地重构了序列建模的逻辑框架,有效缓解长程依赖问题,其核心技术路径如下:一、八卦拓扑位置编码替代正弦编码符号系统的动态映射将伏羲八卦的拓扑结构(乾☰、坤☷等)转化为位置矩阵,通过模12余数配对法则建立位置关联性:阳爻(⚊)映射奇数位,阴爻(⚋)映射偶数位,形成周期性位置感知网格在512长度序列中,位置关系捕捉准确率提升2
- PyTorch study notes[4]
文章目录thesystemofequationsreferencesthesystemofequationsthedefinitionofmatrixwithmathematicalform.thefollowingsamplecodeexpressesthemaxtrixandsquarematrix.importtorch#从Python列表创建矩阵matrix=torch.tensor([[
- 创客匠人联盟生态:重构家庭教育知识变现的底层逻辑
创小匠
重构人工智能大数据
在《家庭教育促进法》推动行业刚需化的背景下,单一个体IP的增长天花板日益明显。创客匠人提出的“联盟生态思维”,正推动家庭教育行业从“单打独斗”转向“矩阵作战”,其核心在于通过工具整合资源,将“同行竞争”转化为“生态共赢”。一、行业趋势:从个体IP到联盟矩阵的必然跃迁数据显示,2024年家庭教育新增服务超10万项,同质化竞争导致获客成本上涨40%。创客匠人联盟模型的破局点在于:当30位区域IP组成联
- 单片机病房呼叫系统设计
01单片机设计
单片机单片机嵌入式硬件
单片机病房呼叫系统设计摘要:一般来说,病房呼叫系统是方便于病人患者与医护人员灵活沟通的一种呼叫系统,是解决医护人员与病人患者之间信息反馈的一种手段。病床呼叫系统的好坏直接关系到病人患者的生命安危,像今年的新冠型肺炎,没有一个灵活可靠的医疗系统真的不行。本课题的任务是设计出基于STM32单片机的病床呼叫系统以及对它的各项功能进行控制的控制系统。系统设计包括矩阵键盘,LCD12864液晶显示器显示电路
- 矩阵题解——搜索二维矩阵 II【LeetCode】
chao_789
我的学习记录矩阵篇_刷题笔记矩阵算法线性代数leetcodepython
240.搜索二维矩阵II1.1核心思想问题描述:给定一个mxn的二维矩阵,矩阵的每一行从左到右递增,每一列从上到下递增。判断目标值target是否存在于矩阵中。解决思路:从矩阵的右上角(或左下角)开始搜索。如果当前元素等于target,返回True。如果当前元素小于target,则排除当前行(因为当前行的所有元素都小于target)。如果当前元素大于target,则排除当前列(因为当前列的所有元素
- 矩阵题解——螺旋矩阵 II【LeetCode】
chao_789
我的学习记录矩阵篇_刷题笔记算法leetcodepython数据结构矩阵
59.螺旋矩阵II第一个算法:基于层数和偏移量的方法算法逻辑思路:初始化阶段:创建n×n的零矩阵,设置起始点(0,0),计算需要循环的层数(n//2),初始化计数器为1核心循环逻辑:通过偏移量控制每一层的边界外层循环:遍历每一层(offset从1到loop)内层四个循环:按顺时针方向填充当前层左→右:填充上边,范围[starty,n-offset)上→下:填充右边,范围[startx,n-offs
- ✨【Blender/Houdini 渲染必看】CPUⓥⓢGPU?3 分钟选对算力不踩坑!
渲染101专业云渲染
blenderhoudini分布式服务器maya
核心问题速答Q:渲染该选CPU还是GPU?✅CPU:复杂场景/批量渲染/预算可控首选✅GPU:单帧速度/实时预览/急单交付必选维度1:硬件硬刚——CPU凭啥赢麻了?▫️多线程王者:16核/32核服务器矩阵,支持50-300台并行渲染▫️场景兼容性:粒子特效/全局光照/超复杂模型稳定输出秘密武器:CPU批量渲染100帧耗时=GPU单帧耗时,整体效率持平!⚙️维度2:动态计费逻辑——成本由什么决定?计
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- 力扣网C语言编程题:搜索二维矩阵(右上角->左下角解法)
魏劭
逻辑编程题C语言算法leetcodec语言
一.简介上一篇文章关于"在二维数组中查找某个元素"的问题,提供了两种解题思路,文章如下:力扣网C语言编程题:搜索二维矩阵的普通解法与二分查找法-CSDN博客本文提供第三种解题思路:从左下角->右上角,或者右上角->左下角。二.力扣网C语言编程题:搜索二维矩阵(右上角->左下角解法)解题思路三:(换行或换列)因为题目中,数组中元素是每行元素是递增的,同时,每一行的首元素比上一行最后一个元素大,那么,
- 大模型笔记10:LoRA微调
errorwarn
笔记
LoRA微调的原理矩阵的秩矩阵的秩代表一个矩阵中所含信息的大小。行秩:矩阵中互相不重复、不依赖(即线性无关)的行的最大数目。列秩:矩阵中互相不重复、不依赖的列的最大数目。事实上,行秩和列秩总是相等的,因此我们通常直接称之为“矩阵的秩”。Transformer中微调哪些参数:LoRA的改进版本
- 数据库系统工程师简要概括笔记
Mint_Datazzh
数据库系统工程师数据库笔记数据库系统工程师
文章内容仅为粗略总结知识,便于个人复习思考原文链接:数据库系统工程师简要概括笔记–笔墨云烟数据库系统工程师—1.1计算机硬件基础知识数据库系统工程师—1.2计算机体系结构与存储系统数据库系统工程师—1.3安全性、可靠性与系统性能评测基础知识数据库系统工程师—2.程序语言基础知识数据库系统工程师—3.1~3.4线性结构、数组和矩阵、树和二叉树、图数据库系统工程师—3.5排序算法数据库系统工程师—3.
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- MySQL之锁机制详解:全局锁,表级锁,行级锁
AA-代码批发V哥
MySQLmysql数据库
MySQL之锁机制详解:全局锁,表级锁,行级锁一、锁机制基础:从并发问题到锁分类1.1并发访问的三大问题1.2锁的核心作用1.3锁粒度分类二、全局锁:掌控整个数据库的"超级锁"2.1全局锁原理2.2全局锁语法与使用2.2.1显式加锁2.2.2隐式加锁(备份场景)2.3全局锁的双刃剑三、表级锁:粗粒度的高效控制3.1表级锁核心特性锁兼容性矩阵:3.2MyISAM表级锁实战3.2.1加锁示例3.2.2
- 基于51单片机开发多功能菜单系统项目介绍(开源)
菜鸟—历险记
51单片机嵌入式硬件单片机
51单片机多功能菜单系统一、项目介绍基于51单片机开发的多功能菜单系统是一种集成多种功能的嵌入式系统,广泛应用于电子产品中,该系统的核心是AT89C52芯片,其强大的处理能力和丰富的外设接口使其成为许多项目的理想选择。这是一个有趣且实用的项目,可以帮助用户实现多种功能,我设计了的功能有:矩阵键盘输入密码、PWM直流电机驱动风扇调速、DS18B20温度监控、光敏电阻检测模块、加减乘除计算器、人的BM
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 亚矩阵云手机:优化海外平台Appodeal多账号广告套利的新利器
云手机指导员
大数据unity矩阵网络安全云计算线性代数
Appodeal作为一个综合性的广告中介平台,整合了众多广告源,为开发者和广告商提供了多样化的广告变现途径。广告套利作为一种常见的盈利策略,通过在不同渠道投放广告并利用差价获取利润。然而,Appodeal为保障平台的公平性和广告质量,设置了严格的风控机制,传统的多账号广告套利面临诸多挑战。亚矩阵云手机凭借其独特的技术优势,为解决这些问题提供了有效的方案,助力实现多账号广告套利的优化。一、Appod
- 3秒搞定DeepSeek数学公式转Word!学生党救星(附代码实测)
Uyker
python编辑器
适用场景:论文交稿deadline/报告美化/作业急救工具白嫖指南:免费+免安装方案优先一、终极方案:Mathpix截图转公式(强推!)效果:复杂矩阵→完美还原步骤:复制DeepSeek输出的LaTeX代码(例)\vec{F}=q(\vec{E}+\vec{v}\times\vec{B})打开Mathpix官网→按Ctrl+Alt+M截取公式右键粘贴到Word→自动变身标准公式!✅优势:识别准确率
- Day7 神经网络的矩阵基础
神经网络的矩阵基础一、矩阵的基本概念1.矩阵的定义与类型矩阵是一个按照长方阵列排列的复数或实数集合。在神经网络中,矩阵是表示和操作数据的基本结构。常见的矩阵类型包括:方阵:行数和列数相等的矩阵,记作n×nn×nn×n矩阵。行向量:只有一行的矩阵,可以看作是一个n×1n×1n×1的矩阵。列向量:只有一列的矩阵,可以看作是一个1×n1×n1×n的矩阵。单位矩阵:主对角线上的元素为1,其余元素为0的方阵
- OpenCV中创建Mat对象
Ethan@LM
opencv人工智能计算机视觉
第1章创建Mat对象1.1.创建空的Mat对象cv::Matmat;1.2.创建灰度图像//创建一个3行4列、8位无符号单通道矩阵(相当于灰度图)cv::Matmat(3,4,CV_8UC1);1.3.创建彩色图像//创建三通道矩阵(相当于彩色图像)cv::Matmat_color(480,640,CV_8UC3);CV_8UC1:8位无符号,单通道(灰度图)CV_8UC3:8位无符号,三通道(彩
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 数学:线性相关和线性无关的关系
千码君2016
数学线性代数系数唯一性定义法矩阵秩法行列式法高维空间的基线性方程组
在线性代数中,线性无关是描述向量组性质的重要概念,它反映了向量组中向量之间是否存在“冗余”或“依赖”关系。以下从定义、判断方法、几何意义及应用等方面详细说明:一、线性无关的定义才成立,则称该向量组线性无关。反之,若存在不全为0的系数使等式成立,则称向量组线性相关。二、核心理解:线性无关的本质三、线性无关的判断方法1.定义法(直接验证)2.矩阵秩法
- 从入门到精通:Spring MVC的矩阵参数、数据预处理与HTTP缓存实战
Solomon_肖哥弹架构
springmvcjavaSpringMVC
肖哥弹架构跟大家“弹弹”SpringMVC设计与实战应用,需要代码关注欢迎点赞,点赞,点赞。关注公号Solomon肖哥弹架构获取更多精彩内容历史热点文章MyCat应用实战:分布式数据库中间件的实践与优化(篇幅一)图解深度剖析:MyCat架构设计与组件协同(篇幅二)一个项目代码讲清楚DO/PO/BO/AO/E/DTO/DAO/POJO/VO写代码总被Dis:5个项目案例带你掌握SOLID技巧,代码有
- 小红书自热矩阵:低成本创业神器,轻松引流实现财富自由
qq_41756364
矩阵小红书小红书矩阵小红书克隆小红书引流
在当今这个充满机遇与挑战的时代,越来越多的人渴望通过低成本创业实现财富自由。而小红书自热矩阵系统的出现,无疑为众多创业者提供了一个强大的工具。一、小红书的巨大潜力小红书作为一款热门的社交电商平台,拥有庞大的用户群体和极高的活跃度。用户在这里分享生活点滴、购物心得、美妆技巧、旅游攻略等各种内容,形成了一个丰富多彩的社交生态。对于创业者来说,小红书不仅是一个展示产品和服务的平台,更是一个获取精准流量的
- 数学实验matlab课后习题,数学实验练习题(MATLAB)
沈洲行
数学实验matlab课后习题
注意:在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题:1)30sinlimxmxmxx->-2)(4)cos,1000.0=xmxyey求3)21/20mxedx?(求近似值,可以先用inline定义被积函数,然后用quad命令)4)4224xdxmx+?50x=展开(最高次幂为8).2.对矩阵21102041Am-???=??-??,分别求逆矩阵
- 代码随想录|图论|05岛屿数量(深搜DFS)
Paper Clouds
图论深度优先算法数据结构leetcode
leetcode:99.岛屿数量题目题目描述:给定一个由1(陆地)和0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成,并且四周都是水域。你可以假设矩阵外均被水包围。输入描述:第一行包含两个整数N,M,表示矩阵的行数和列数。后续N行,每行包含M个数字,数字为1或者0。输出描述:输出一个整数,表示岛屿的数量。如果不存在岛屿,则输出0。思路遇到一个没有遍历过的节点陆
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc