题目链接:点击打开链接
题意:
我们认为一个数 num 能被每一位上的数字整除(expect 0) 那么这个数num就是合法的。
给出区间[l,r] ,问这个区间内有多少个合法的数。
首先solve(long x) 返回 [0, x] 内的合法个数,答案就是 solve(r) - solve(l-1);
以1234567为例
flag表示当前这位是能任意填,还是只能填<=该位对应的数字
若当前搜索的是第三位,且第二位已经填了0或1,则此时第三位可以任意填。
若第二位填的是2,则第三位只能填 [0, 3] ,所以dfs时传一个标记,标记这位是否能随便填。
若当前搜索的是第i位,显然 pre_lcm和pre_mod 就是[最高位, i+1] 的mod值和lcm
pre_mod的作用是在填充完所有数字(n位数字都填充完)判断能否被这n位的lcm整除,
若能整除则 num = lcm*x (而lcm最大是 lcm(1,2··9) = 2520,所以2520%lcm == 0)
设num = x*2520+y,则 num%lcm = (x*2520+y)%lcm = y%lcm
=>num %lcm = num%2520%lcm
而2520的所有因子都有可能是2~9的组合的公倍数,(当然只是部分的因子)Init()离散化一下2520的所有因子
dp[pos][pre_mod][pre_lcm]代表前pos位数对2520取余为pre_mod并且非零位的lcm位pre_lcm的个数。
而答案是最低位往上回溯的,所以可以记忆化
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import jav<span style="background-color: rgb(255, 255, 255);"> xcode </span><span style="font-family: Arial, Helvetica, sans-serif;">a.text.DecimalFormat;</span>
import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Queue; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; public class Main { int[] bit = new int[30], hash = new int[2550]; long[][][] dp = new long[30][2550][50]; long dfs(int pos, int pre_mod, int pre_lcm, boolean flag){ if(pos == 0)return pre_mod%pre_lcm==0?1:0; if(flag && dp[pos][pre_mod][hash[pre_lcm]]!=-1) return dp[pos][pre_mod][hash[pre_lcm]]; int u = flag?9:bit[pos]; long ans = 0L; for(int d = 0; d <= u; d++){ int next_mod = (pre_mod*10+d)%mod; int next_lcm = pre_lcm; if(d>0)next_lcm = Lcm(pre_lcm, d); ans += dfs(pos-1, next_mod, next_lcm, flag||d<u); } if(flag) dp[pos][pre_mod][hash[pre_lcm]] = ans; return ans; } long solve(long x){ int len = 0; while(x>0){ bit[++len] = (int) (x%10L); x/=10L; } return dfs(len, 0, 1, false); } void Init(){ int cnt = 0; for(int i = 1; i <= mod; i++)if(mod%i==0)hash[i]=++cnt; for(int i = 0; i < 30; i++)for(int j = 0; j < 2520; j++)for(int k = 0; k < 50; k++)dp[i][j][k] = -1; } void work() throws Exception{ Init(); int T = Int(); while(T-->0){ long l = Long(), r = Long(); out.println(solve(r) - solve(l-1L)); } } public static void main(String[] args) throws Exception{ Main wo = new Main(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); // out = new PrintWriter(new File("output.txt")); wo.work(); out.close(); } static int N = 3*100050; static int M = N*N * 10; DecimalFormat df=new DecimalFormat("0.0000"); static long inf = 1000000000000L; static long inf64 = (long) 1e18*2; static double eps = 1e-8; static double Pi = Math.PI; static int mod = 2520 ; private String Next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int Int() throws Exception{ return Integer.parseInt(Next()); } private long Long() throws Exception{ return Long.parseLong(Next()); } StringTokenizer str; static BufferedReader in; static PrintWriter out; /* class Edge{ int from, to, nex; Edge(){} Edge(int from, int to, int nex){ this.from = from; this.to = to; this.nex = nex; } } Edge[] edge = new Edge[M<<1]; int[] head = new int[N]; int edgenum; void init_edge(){for(int i = 0; i < N; i++)head[i] = -1; edgenum = 0;} void add(int u, int v){ edge[edgenum] = new Edge(u, v, head[u]); head[u] = edgenum++; }/**/ int upper_bound(int[] A, int l, int r, int val) {// upper_bound(A+l,A+r,val)-A; int pos = r; r--; while (l <= r) { int mid = (l + r) >> 1; if (A[mid] <= val) { l = mid + 1; } else { pos = mid; r = mid - 1; } } return pos; } int Pow(int x, int y) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } double Pow(double x, int y) { double ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } int Pow_Mod(int x, int y, int mod) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } long Pow(long x, long y) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } long Pow_Mod(long x, long y, long mod) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } int Gcd(int x, int y){ if(x>y){int tmp = x; x = y; y = tmp;} while(x>0){ y %= x; int tmp = x; x = y; y = tmp; } return y; } long Gcd(long x, long y){ if(x>y){long tmp = x; x = y; y = tmp;} while(x>0){ y %= x; long tmp = x; x = y; y = tmp; } return y; } int Lcm(int x, int y){ return x/Gcd(x, y)*y; } long Lcm(long x, long y){ return x/Gcd(x, y)*y; } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } long max(long x, long y) { return x > y ? x : y; } long min(long x, long y) { return x < y ? x : y; } int abs(int x) { return x > 0 ? x : -x; } double abs(double x) { return x > 0 ? x : -x; } long abs(long x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } double sin(double x){return Math.sin(x);} double cos(double x){return Math.cos(x);} double tan(double x){return Math.tan(x);} double sqrt(double x){return Math.sqrt(x);} }