ural 1297 Palindrome求最长连续回文子串(后缀数组求法)

ural 1297 Palindrome

题意:很简单,求最长连续回文子串。

解法:这题数据范围非常小,长度只有2000,用dp,n^2可以做,但如果长度变成100000了呢?后缀数组就可以发挥威力了。将原串翻转后接到原串后面,构成一个新的串,枚举前n个字符,设该字符为i,以它为中点的最长回文子串的长度就是。。自己去算算吧,很简单的,注意考虑奇偶。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std ;
const int maxn = 1111111 ;

int wa[maxn] , wb[maxn] , ws[maxn] , wv[maxn] ;
int p[maxn] ;
int min ( int a , int b ) { return a < b ? a : b ; }

struct suf
{
	int rank[maxn] , hei[maxn] , sa[maxn] ;

	int cmp ( int *r , int i , int j , int l )
	{
		return r[i] == r[j] && r[i+l] == r[j+l] ;
	}

	void da ( int *r , int n , int m )
	{
    	int *x = wa , *y = wb , *t ;
		int i , j , k , p ;
		for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ;
		for ( i = 0 ; i < n ; i ++ ) ws[x[i]=r[i]] ++ ;
		for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ;
		for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[i]]] = i ;
		for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p )
		{
			for ( p = 0 , i = n - j ; i < n ; i ++ ) y[p++] = i ;
			for ( i = 0 ; i < n ; i ++ ) if ( sa[i] >= j ) y[p++] = sa[i] - j ;
			for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ;
			for ( i = 0 ; i < n ; i ++ ) ws[x[i]] ++ ;
			for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ;
			for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[y[i]]]] = y[i] ;
			for ( t = x , x = y , y = t ,x[sa[0]] = 0 , p = 1 , i = 1 ; i < n ; i ++ )
				x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p - 1 : p ++ ;
		}
		k = 0 ;
		for ( i = 1 ; i < n ; i ++ ) rank[sa[i]] = i ;
		for ( i = 0 ; i < n - 1 ; hei[rank[i++]] = k )
			for ( k ? k -- : 0 , j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k ++ ) ;
	}

} arr ;

int dp[25][maxn] , f[maxn] ;
void rmq ( int n )
{
	int i , j ;
	for ( i = 1 ; i <= 20 ; i ++ )
		for ( j = 1 ; j + ( 1 << i ) - 1 <= n ; j ++ )
		{
			dp[i][j] = min ( dp[i-1][j] , dp[i-1][j+(1<<(i-1))] ) ;
		}
}

int query ( int l , int r )
{
	if ( l > r ) swap ( l , r ) ;
	l ++ ;
	if ( l == r ) return dp[0][l] ;
	int k = r - l + 1 ;
	return min ( dp[f[k]][l] , dp[f[k]][r-(1<<f[k])+1] ) ;
}

char s[maxn] ;
int s1[maxn] ;

int main ()
{
	int cas , i , j = 0 , k ;
	for ( i = 2 ; i < maxn - 10 ; i ++ )
	{
		if ( i > ( 1 << (j+1) ) ) j ++ ;
		f[i] = j ;
	}
	while ( scanf ( "%s" , s ) != EOF )
	{
		int len = strlen ( s ) ;
		int n = len ;
		for ( i = 0 ; i < n ; i ++ ) s1[i] = s[i] ;
		reverse ( s , s + n ) ;
		for ( i = 0 ; i < len ; i ++ )
			s1[n++] = s[i] ;
		s1[n] = 0 ;
		arr.da ( s1 , n + 1 , 555 ) ;
		for ( i = 1 ; i <= n ; i ++ ) dp[0][i] = arr.hei[i] ;
		rmq ( n ) ;
		int l = -1 , r = -1 , ans = 0 ;
		for ( i = 0 ; i < n/2 ; i ++ )
		{
			int k ;
			if ( i )
			{
				int v = query ( arr.rank[i] , arr.rank[n-i] ) ;
				k = min ( n / 2 - i , query ( arr.rank[i] , arr.rank[n-i] ) ) * 2 ;
				if ( k > ans ) ans = k , l = i - k / 2 , r = i + k / 2 - 1 ;
				else if ( k == ans && l == -1 )l = i - k / 2 , r = i + k / 2 - 1 ;
			}
			k = min ( n / 2 - i , query ( arr.rank[i] , arr.rank[n-i-1] ) ) ;
			k -- ;
			if ( k * 2 + 1 > ans ) ans = k * 2 + 1 , l = i - k , r = i + k ;
			else if ( k * 2 + 1 == ans && i - k < l ) l = i - k , r = i + k ;
		}
		reverse ( s , s + n/2 ) ;
		for ( i = l ; i <= r ; i ++ ) printf ( "%c" , s[i] ) ; puts ( "" ) ;
	}
}


你可能感兴趣的:(字符串,后缀数组)