ural 1297 Palindrome
题意:很简单,求最长连续回文子串。
解法:这题数据范围非常小,长度只有2000,用dp,n^2可以做,但如果长度变成100000了呢?后缀数组就可以发挥威力了。将原串翻转后接到原串后面,构成一个新的串,枚举前n个字符,设该字符为i,以它为中点的最长回文子串的长度就是。。自己去算算吧,很简单的,注意考虑奇偶。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std ; const int maxn = 1111111 ; int wa[maxn] , wb[maxn] , ws[maxn] , wv[maxn] ; int p[maxn] ; int min ( int a , int b ) { return a < b ? a : b ; } struct suf { int rank[maxn] , hei[maxn] , sa[maxn] ; int cmp ( int *r , int i , int j , int l ) { return r[i] == r[j] && r[i+l] == r[j+l] ; } void da ( int *r , int n , int m ) { int *x = wa , *y = wb , *t ; int i , j , k , p ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]=r[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[i]]] = i ; for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p ) { for ( p = 0 , i = n - j ; i < n ; i ++ ) y[p++] = i ; for ( i = 0 ; i < n ; i ++ ) if ( sa[i] >= j ) y[p++] = sa[i] - j ; for ( i = 0 ; i < m ; i ++ ) ws[i] = 0 ; for ( i = 0 ; i < n ; i ++ ) ws[x[i]] ++ ; for ( i = 1 ; i < m ; i ++ ) ws[i] += ws[i-1] ; for ( i = n - 1 ; i >= 0 ; i -- ) sa[--ws[x[y[i]]]] = y[i] ; for ( t = x , x = y , y = t ,x[sa[0]] = 0 , p = 1 , i = 1 ; i < n ; i ++ ) x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p - 1 : p ++ ; } k = 0 ; for ( i = 1 ; i < n ; i ++ ) rank[sa[i]] = i ; for ( i = 0 ; i < n - 1 ; hei[rank[i++]] = k ) for ( k ? k -- : 0 , j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k ++ ) ; } } arr ; int dp[25][maxn] , f[maxn] ; void rmq ( int n ) { int i , j ; for ( i = 1 ; i <= 20 ; i ++ ) for ( j = 1 ; j + ( 1 << i ) - 1 <= n ; j ++ ) { dp[i][j] = min ( dp[i-1][j] , dp[i-1][j+(1<<(i-1))] ) ; } } int query ( int l , int r ) { if ( l > r ) swap ( l , r ) ; l ++ ; if ( l == r ) return dp[0][l] ; int k = r - l + 1 ; return min ( dp[f[k]][l] , dp[f[k]][r-(1<<f[k])+1] ) ; } char s[maxn] ; int s1[maxn] ; int main () { int cas , i , j = 0 , k ; for ( i = 2 ; i < maxn - 10 ; i ++ ) { if ( i > ( 1 << (j+1) ) ) j ++ ; f[i] = j ; } while ( scanf ( "%s" , s ) != EOF ) { int len = strlen ( s ) ; int n = len ; for ( i = 0 ; i < n ; i ++ ) s1[i] = s[i] ; reverse ( s , s + n ) ; for ( i = 0 ; i < len ; i ++ ) s1[n++] = s[i] ; s1[n] = 0 ; arr.da ( s1 , n + 1 , 555 ) ; for ( i = 1 ; i <= n ; i ++ ) dp[0][i] = arr.hei[i] ; rmq ( n ) ; int l = -1 , r = -1 , ans = 0 ; for ( i = 0 ; i < n/2 ; i ++ ) { int k ; if ( i ) { int v = query ( arr.rank[i] , arr.rank[n-i] ) ; k = min ( n / 2 - i , query ( arr.rank[i] , arr.rank[n-i] ) ) * 2 ; if ( k > ans ) ans = k , l = i - k / 2 , r = i + k / 2 - 1 ; else if ( k == ans && l == -1 )l = i - k / 2 , r = i + k / 2 - 1 ; } k = min ( n / 2 - i , query ( arr.rank[i] , arr.rank[n-i-1] ) ) ; k -- ; if ( k * 2 + 1 > ans ) ans = k * 2 + 1 , l = i - k , r = i + k ; else if ( k * 2 + 1 == ans && i - k < l ) l = i - k , r = i + k ; } reverse ( s , s + n/2 ) ; for ( i = l ; i <= r ; i ++ ) printf ( "%c" , s[i] ) ; puts ( "" ) ; } }