HDU 4280 Island Transport(网络流)

其实这题就是个网络流模版题,但是确实是一道很考验模版的题,由于之前做的网络流题数据规模都比较小,直接就用邻接矩阵实现了,没有邻接表的SAP模版,现在找到了。没什么技术含量,建图,套模版,然后就完了。据说这道题的正解是求平面图的对偶图(这都是神马……),再跑最短路算法,我觉得这不在我的能力范围之内了,看题解也没看懂,能通过这题弄到一个模版就不错了……
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int VM = 100005, EM = 400005, INF = 0x3f3f3f3f;
struct E
{
    int to, frm, nxt, cap;
}edge[EM];
int head[VM], e, n, m, src, des;
int dep[VM], gap[VM]; //gap[x]=y:说明残留网络中dep[i]=x的个数为y
void addedge(int u, int v, int c)
{
    edge[e].frm = u;
    edge[e].to = v;
    edge[e].cap = c;
    edge[e].nxt = head[u];
    head[u] = e++;
    edge[e].frm = v;
    edge[e].to = u;
    edge[e].cap = 0;
    edge[e].nxt = head[v];
    head[v] = e++;
}
int Q[VM];
void BFS(int src, int des)
{
    memset(dep, -1, sizeof(dep));
    memset(gap, 0, sizeof(gap));
    gap[0] = 1;   //说明此时有1个dep[i] = 0
    int front = 0, rear = 0;
    dep[des] = 0;
    Q[rear++] = des;
    int u, v;
    while (front != rear)
    {
        u = Q[front++];
        //cout<<u<<endl;
        front = front%VM;
        for (int i=head[u]; i!=-1; i=edge[i].nxt)
        {
            //cout<<i<<endl;
            v = edge[i].to;
            if (edge[i].cap != 0 || dep[v] != -1)
                continue;
            Q[rear++] = v;
            rear = rear % VM;
            ++gap[dep[v] = dep[u] + 1];  //求出各层次的数量
        }
    }
}
int S[VM],cur[VM];
int SAP()
{
    int res = 0;
    BFS(src, des);
    int  top = 0;
    memcpy(cur, head, sizeof(head));
    int u = src, i;
    while (dep[src] < n)   //n为结点的个数
    {
        if (u == des)
        {
            int temp = INF, inser = n;
            for (i=0; i!=top; ++i)
                if (temp > edge[S[i]].cap)
                {
                    temp = edge[S[i]].cap;
                    inser = i;
                }
            for (i=0; i!=top; ++i)
            {
                edge[S[i]].cap -= temp;
                edge[S[i]^1].cap += temp;
            }
            res += temp;
            top = inser;
            u = edge[S[top]].frm;
        }

        if (u != des && gap[dep[u] -1] == 0)//出现断层,无增广路
            break;
        for (i = cur[u]; i != -1; i = edge[i].nxt)//遍历与u相连的未遍历结点
            if (edge[i].cap != 0 && dep[u] == dep[edge[i].to] + 1) //层序关系, 找到允许
                break;

        if (i != -1)//找到允许弧
        {
            cur[u] = i;
            S[top++] = i;//加入路径栈
            u = edge[i].to;//查找下一个结点
        }
        else   //无允许的路径,修改标号 当前点的标号比与之相连的点中最小的多1
        {
            int min = n;
            for (i = head[u]; i != -1; i = edge[i].nxt) //找到与u相连的v中dep[v]最小的点
            {
                if (edge[i].cap == 0)
                    continue;
                if (min > dep[edge[i].to])
                {
                    min = dep[edge[i].to];
                    cur[u] = i;          //最小标号就是最新的允许弧
                }
            }
            --gap[dep[u]];          //dep[u] 的个数变化了 所以修改gap
            ++gap[dep[u] = min + 1]; //将dep[u]设为min(dep[v]) + 1, 同时修改相应的gap[]
            if (u != src) //该点非源点&&以u开始的允许弧不存在,退点
                u = edge[S[--top]].frm;
        }
    }
    return res;
}
int main()
{
    int t,x,y,w;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        int l=1000000,r=-1000000;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&x,&y);
            if(x<=l)
            {
                l=x;
                src=i;
            }
            if(x>=r)
            {
                r=x;
                des=i;
            }
        }
        e=0;
        memset(head,-1,sizeof(head));
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&x,&y,&w);
            addedge(x,y,w);
            addedge(y,x,w);
        }
        int ans=SAP();
        printf("%d\n",ans);
    }
    return 0;
}

你可能感兴趣的:(c,算法,网络,SAP)