数据挖掘10大挑战性问题

 

在ICDM2005前夕,美国的吴信东教授等人让世界上这个方向的顶级专家列出了他们各自认为数据挖掘研究领域的10大挑战性问题,然后他们总结这些专家的意见,得出了数据挖掘10大挑战性问题:

  1. Developing a Unifying Theory of Data Mining(开发一个统一的理论数据挖掘
  2. Scaling Up for High Dimensional Data/High Speed Streams (扩大高维数据/高速
  3. Mining Sequence Data and Time Series Data  (矿业序列数据和时间序列数据
  4. Mining Complex Knowledge from Complex Data (复杂的数据挖掘复杂的知识
  5. Data Mining in a Network Setting (数据挖掘技术在网络设置
  6. Distributed Data Mining and Mining Multi-agent Data (分布式数据挖掘和挖掘代理数据)
  7. Data Mining for Biological and Environmental Problems (生物与环境问题数据挖掘)
  8. Data-Mining-Process Related Problems (数据挖掘过程相关问题)
  9. Security, Privacy and Data Integrity (安全,隐私和数据完整性)
  10. Dealing with Non-static, Unbalanced and Cost-sensitive Data(非静态不平衡和成本敏感的数据处理)

你可能感兴趣的:(数据挖掘)